兩條直線相交有一個交點,3條直線相交最多有3個交點,4條直線相交最多有6個交點,問10條直線相交最多有幾個交點?n條呢?

答案:

解:10條直線相交最多有45個交點;n條直線相交最多有n(n-1)個交點(n≥2的整數(shù)).


提示:

點撥:2條直線相交有1個交點;3條直線相交最多有3個交點,即3=1+2;4條直線相交最多有6個交點,即6=1+2+3;5條直線相交最多有10個交點,即10=1+2+3+4.

根據(jù)尋找到的規(guī)律,得

10條直線相交最多有1+2+3+4+…+9=45個交點;

  ……

n條直線相交最多有1+2+3+4+…+(n-1)=n(n-1)個交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點,弦DE精英家教網(wǎng)⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究型問題
如圖所示,在同一平面內(nèi),兩條直線相交時最多有1個交點,三條直線相交時最多有3個交點,四條直線相交時最多有6個交點.

(1)當五條直線相交時交點最多會有多少個?
(2)猜想n條直線相交時最多有幾個交點?(用含n的代數(shù)式表示)
(3)算一算,同一平面內(nèi)10條直線最多有多少個?
(4)平面上有10條直線,無任何3條交于一點(3條以上交于一點也無),也無重合,它們會出現(xiàn)31個交點嗎?如果能給出一個畫法;如果不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列圖形,閱讀下面的相關(guān)文字并回答以下問題:
兩條直線相交    三條直線相交      四條直線相交
只有一個交點    最多的3個交點    最多有6個交;
猜想:①5條直線相交最多有幾個交點?
②6條直線相交最多有幾個交點?
③n條直線相交最多有n個交點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第5章《中心對稱圖形(二)》中考題集(21):5.3 圓周角(解析版) 題型:解答題

我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年廣東省佛山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•佛山)我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案