(本題滿分12分)
如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點P為射線CA上的一個動點,以為圓心,1為半徑作
(1)連結(jié),若,試判斷與直線AB的位置關(guān)系,并說明理由;
(2)當(dāng)PC為              時,與直線AB相切?當(dāng)與直線AB相交時,寫出PC的取值范圍為                  
(3)當(dāng)與直線AB相交于點M、N時,是否存在△PMN為正三角形?若存在,求出PC的值;若不存在,說明理由.
解:(1)過點P作PD⊥AB于點D,………………………1分
∵PA = PB,∴AD = BD,……………………………………2分
在Rt△ACB中,AC = 4,BC = 2,
∴AB = ,∴AD =,……………3分
∵tan∠CAB= ,∴AD =>1,……………4分
與直線AB相離;……………………………………5分
(2)4±,<PC<;……………………9分
(3)當(dāng)和線段AB相交時,過點P作PH⊥AB于點H,
∵△PMN為正三角形,即△PMN是邊長為1的三角形;
,∵tan∠CAB= ,
∴PA=,∴PC=4-;
同理,當(dāng)交在BA的延長線部分時,PC=4+.………………12分解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當(dāng)點M到達(dá)點B時,兩點同時停止運動.過點M作直線lAD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).

(1)當(dāng)時,求線段的長;

(2)當(dāng)0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時,連接PQ交線段AC于點R.請?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個定值;若不是,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)如圖,在邊長為2的正方形ABCD中,PAB的中點,Q為邊CD上一動點,設(shè)DQt(0≤t≤2),線段PQ的垂直平分線分別交邊ADBC于點M、N,過QQEAB于點E,過MMFBC于點F
(1)當(dāng)t≠1時,求證:△PEQ≌△NFM
(2)順次連接P、M、QN,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖,的頂點A、B在二次函數(shù)的圖像上,又點A、B[分別在軸和軸上,ABO

1.(1)求此二次函數(shù)的解析式;(4分)

2.

 

 
(2)過點交上述函數(shù)圖像于點,

在上述函數(shù)圖像上,當(dāng)相似時,求點的坐標(biāo).(8分)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題

(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點,與y軸交于B點,與直線交于A、D兩點。

⑴直接寫出A、C兩點坐標(biāo)和直線AD的解析式;

⑵如圖2,質(zhì)地均勻的正四面體骰子的各個面上依次標(biāo)有數(shù)字-1、1、3、4.隨機拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點的縱坐標(biāo).則點落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,,.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當(dāng)點M到達(dá)點B時,兩點同時停止運動.過點M作直線lAD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).

(1)當(dāng)時,求線段的長;

(2)當(dāng)0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時,連接PQ交線段AC于點R.請?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個定值;若不是,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案