【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣30),C0,).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為_____

【答案】(﹣3

【解析】

連接OB1,作B1HOAH,證明AOB≌△HB1O,得到B1HOA3OHAB,得到答案.

解:連接OB1,作B1HOAH,如圖所示:

由題意得,OA3,ABOC

tanBOA,

∴∠BOA30°,

∴∠OBA60°,

由旋轉(zhuǎn)的性質(zhì)可知,∠B1OB=∠BOA30°,

∴∠B1OH60°

AOBHB1O中,

,

∴△AOB≌△HB1OAAS),

B1HOA3,OHAB,

∴點(diǎn)B1的坐標(biāo)為(﹣,3),

故答案為:(﹣,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)《九章算術(shù)》記載:“今有山居木西,不知其高.山去五十三里,木高九丈五尺.人立木東三里,望木末適與山峰斜平.人目高七尺.問山高幾何?”譯文如下:如圖,今有山位于樹的西面.山高為未知數(shù),山與樹相距53里,樹高95.人站在離樹3里的地方,觀察到樹梢恰好與山峰處在同一條直線上,人眼離地7.則山高的長為(結(jié)果保留到整數(shù),1=10尺)( )

A.162B.163C.164D.165

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價(jià)為20元.根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量是250本;銷售單價(jià)每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時(shí)每天的銷售量(本)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈(zèng)元給困難職工,每天扣除捐贈(zèng)后可獲得最大利潤為1960元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中有兩點(diǎn),若二次函數(shù)的圖像與線段AB只有一個(gè)交點(diǎn),則( 。

A.的值可以是B.的值可以是

C.的值不可能是-1.2D.的值不可能是-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某植物園有一塊足夠大的空地,其中有一堵長為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開.小俊設(shè)計(jì)了如圖甲和乙的兩種方案:

方案甲中AD的長不超過墻長;方案乙中AD的長大于墻長.

1)若a=6

①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長是多少米?

②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?

2)若0a6.5,哪種方案能圍成面積最大的矩形花圃?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)DE位于AB兩側(cè)的半圓上,射線DCO于點(diǎn)D,已知點(diǎn)E是半圓弧AB上的動(dòng)點(diǎn),點(diǎn)F是射線DC上的動(dòng)點(diǎn),連接DE、AE,DEAB交于點(diǎn)P,再連接FP、FB,且∠AED45°.

1)求證:CDAB;

2)填空:

當(dāng)∠DAE   時(shí),四邊形ADFP是菱形;

當(dāng)∠DAE   時(shí),四邊形BFDP是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)兩小時(shí),甲車到達(dá)B地后立即調(diào)頭,并保持原速度與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過一段時(shí)間后兩車同時(shí)到達(dá)C地,設(shè)兩車之間的距離為y(干米),甲車行駛的時(shí)間為x小時(shí),yx之間的函數(shù)圖象如圖所示,則當(dāng)甲車重返A地時(shí),乙車距離C________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O在線段AB上,AO2,OB1,OC為射線,且∠BOC60°,動(dòng)點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)O出發(fā),沿射線OC做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.當(dāng)ABP是直角三角形時(shí),t的值為( 。

A. B. C. 1 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠ACB=90°,點(diǎn)H是△ABC的內(nèi)心,AH的延長線和三角形ABC的外接圓O相交于點(diǎn)D,連結(jié)DB.

(1)求證:DH=DB;

(2)過點(diǎn)D作BC的平行線交AC、AB的延長線分別于點(diǎn)E、F,已知CE=1,圓O的直徑為5.

求證:EF為圓O的切線;

求DF的長.

查看答案和解析>>

同步練習(xí)冊答案