【題目】已知直線y=kx+b與x軸、y軸分別交于A、B兩點,與反比例函數(shù)交于一象限內的P( ,n),Q(4,m)兩點,且tan∠BOP= :
(1)求反比例函數(shù)和直線的函數(shù)表達式;
(2)求△OPQ的面積.
【答案】
(1)解:過P作PC⊥y軸于C,
∵P( ,n),
∴OC=n,PC= ,
∵tan∠BOP= ,
∴n=8,
∴P( ,8),
設反比例函數(shù)的解析式為y= ,
∴a=4,
∴反比例函數(shù)的解析式為y= ,
∴Q(4,1),
把P( ,8),Q(4,1)代入y=kx+b中得 ,
∴ ,
∴直線的函數(shù)表達式為y=﹣2x+9
(2)解:過Q作OD⊥y軸于D,
則S△POQ=S四邊形PCDQ= ( +4)×(8﹣1)= .
【解析】(1)過P作PC⊥y軸于C,由P( ,n),得到OC=n,PC= ,根據(jù)三角函數(shù)的定義得到P( ,8),于是得到反比例函數(shù)的解析式為y= ,Q(4,1),解方程組即可得到直線的函數(shù)表達式為y=﹣2x+9;(2)過Q作OD⊥y軸于D,于是得到S△POQ=S四邊形PCDQ= .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點,O是AB上一點,經(jīng)過A、D兩點的⊙O分別交AB、AC于點E、F.
(1)用尺規(guī)補全圖形(保留作圖痕跡,不寫作法);
(2)求證:BC與⊙O相切;
(3)當AD=2 ,∠CAD=30°時,求劣弧AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國務院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統(tǒng)計圖表:
獲獎等次 | 頻數(shù) | 頻率 |
一等獎 | 10 | 0.05 |
二等獎 | 20 | 0.10 |
三等獎 | 30 | b |
優(yōu)勝獎 | a | 0.30 |
鼓勵獎 | 80 | 0.40 |
請根據(jù)所給信息,解答下列問題:
(1)a= , b= ,
(2)補全頻數(shù)分布直方圖;
(3)若用扇形統(tǒng)計圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應的扇形圓心角的度數(shù)是多少?
(4)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P的坐標為(x1 , y1),點Q的坐標為(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關矩形”,如圖為點P,Q的“相關矩形”示意圖.
(1)已知點A的坐標為(1,0), ①若點B的坐標為(3,1),求點A,B的“相關矩形”的面積;
②點C在直線x=3上,若點A,C的“相關矩形”為正方形,求直線AC的表達式;
(2)⊙O的半徑為 ,點M的坐標為(m,3),若在⊙O上存在一點N,使得點M,N的“相關矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學初三(1)班共有40名同學,在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:
跳繩數(shù)/個 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 數(shù) | 1 | 2 | 8 | 11 | 5 |
將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;
(2)這個班同學這次跳繩成績的眾數(shù)是個,中位數(shù)是個;
(3)若跳滿90個可得滿分,學校初三年級共有720人,試估計該中學初三年級還有多少人跳繩不能得滿分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點O以每秒3°的速度沿順時針方向旋轉一周.如圖2,經(jīng)過t秒后,OM恰好平分∠BOC.①求t的值;②此時ON是否平分∠AOC?請說明理由;
(2)在(1)問的基礎上,若三角板在轉動的同時,射線OC也繞O點以每秒6°的速度沿順時針方向旋轉一周,如圖3,那么經(jīng)過多長時間OC平分∠MON?請說明理由;
(3)在(2)問的基礎上,經(jīng)過多長時間OC平分∠MOB?請畫圖并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點處觀察點A的仰角為60°,已知坡角為30°,你能求出樓房AB的高度嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉180°,所得拋物線的解析式是( )
A.y=﹣(x+1)2+2
B.y=﹣(x﹣1)2+4
C.y=﹣(x﹣1)2+2
D.y=﹣(x+1)2+4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com