如圖,矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)E從B點(diǎn)沿BC邊移動(dòng)到C停止,DF⊥AE于F,設(shè)E在運(yùn)動(dòng)過程中,AE長(zhǎng)為x,DF長(zhǎng)為y,則下列能反映y與x函數(shù)關(guān)系的是( )
A.y=7x B.y= C.y= D.y=
C【考點(diǎn)】相似三角形的判定與性質(zhì);函數(shù)關(guān)系式;矩形的性質(zhì).
【分析】根據(jù)題意,∠ABD=∠AFD=90°;∠AEB=∠DAF.得到△ABE與△ADF相似.運(yùn)用相似三角形的性質(zhì)得關(guān)系式.
【解答】解:矩形ABCD中,AB=3,AD=4,DF⊥AE,
∴∠ABE=∠AFD=90°,AB=AD=4,AD∥BC.
∴∠DAF=∠AEB.
∴△ABE∽△DFA.
∴AE:AD=AB:DF,
即 x:4=3:y,
∴y=.
故選C.
【點(diǎn)評(píng)】此題考查矩形的性質(zhì),相似三角形的判定與性質(zhì),求函數(shù)的關(guān)系式,熟練掌握相似三角形的判定定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知:直線y=﹣x+1與坐標(biāo)軸交于A,B兩點(diǎn),矩形ABCD對(duì)稱中心為M,雙曲線y=(x>0)正好經(jīng)過C,M兩點(diǎn),則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
正方形ABCD邊長(zhǎng)為a,點(diǎn)E、F分別是對(duì)角線BD上的兩點(diǎn),過點(diǎn)E、F分別作AD、AB的平行線,如圖,則圖中陰影部分的面積之和等于( 。
A.a(chǎn)2 B.0.25a2 C.0.5a2 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF.說明:
(1)CD=EB;
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
拋物線y=x2﹣2x向右平移2個(gè)單位再向上平移3個(gè)單位,所得圖象的解析式為( 。
A.y=x2+3 B.y=x2﹣4x+3 C.y=x2﹣6x+11 D.y=x2﹣6x+8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于x的方程﹣x2+2(k﹣1)x﹣k2+1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k為何值時(shí),方程的兩個(gè)實(shí)數(shù)根的平方和等于16?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的一元二次方程(a﹣1)x2﹣2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是( )
A.a(chǎn)>2 B.a(chǎn)<2 C.a(chǎn)<2且a≠l D.a(chǎn)<﹣2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com