△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.
(1)如圖(1)當射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結論.
(3)在圖(2)中,若AB=AC=10,BC=12,當△DEF的面積等于△ABC的面積的時,求線段EF的長.
(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析
【解析】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE。(3)5
(2)△BDF∽△CED∽△DEF,證明如下:
∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE。
∵AB=AC,∴∠B=∠C!唷鰾DF∽△CED!。
∵BD=CD,∴,即。
又∵∠C=∠EDF,∴△CED∽△DEF!唷鰾DF∽△CED∽△DEF。
(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.
∵AB=AC,D是BC的中點,∴AD⊥BC,BD=BC=6。
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣62,
∴AD=8。
∴S△ABC=•BC•AD=×12×8=48,
S△DEF=S△ABC=×48=12。
又∵•AD•BD=•AB•DH,∴。
∵△BDF∽△DEF,∴∠DFB=∠EFD。
∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF。
又∵DF=DF,∴△DHF≌△DGF(AAS)。∴DH=DG=。
∵S△DEF=·EF·DG=·EF·=12,∴EF=5。
(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE:
∵AB=AC,D為BC的中點,∴AD⊥BC,∠B=∠C,∠BAD=∠CAD。
又∵∠MDN=∠B,∴△ADE∽ABD。
同理可得:△ADE∽△ACD。
∵∠MDN=∠C=∠B,∠B+∠BAD=90°,∠ADE+∠EDC=90°,∠B=∠MDN,
∴∠BAD=∠EDC。
∵∠B=∠C,∴△ABD∽△DCE!唷鰽DE∽△DCE。
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出,從而得出△BDF∽△CED∽△DEF。
(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可
科目:初中數(shù)學 來源: 題型:
CD | DA |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com