【題目】張先生準備在沙坪壩購買一套小戶型商品房,他去某樓盤了解情況得知,該戶型商品房的單價是12000/m2,面積如圖所示(單位:米,臥室的寬為a米,衛(wèi)生間的寬為x米),

(1) 用含ax的式子表示該戶型的面積

(2) 售房部為張先生提供了以下兩種優(yōu)惠方案:

方案一:整套房的單價是12 000/m2,其中廚房只算的面積;

方案二:整套房按原銷售總金額的9折出售,

若張先生購買的戶型a=3,且分別用兩種方案購房金額相等,求x的值.

【答案】(1)30+2a +2x;(2) x=2.

【解析】

(1)該戶型商品房的面積=大長方形的面積-衛(wèi)生間右側的長方形,代入計算,也可以利用各間的面積和來求;

(2)得出兩種購買方案,利用兩關系式直接得出答案;

解:(1)S=6×7-(6-a-x)(7-2-3)=30+2a +2x;

(2) a=3時,

方案一:12000×(18+12+6×+2x)=12000×(2x+32)=24000x+384000,

方案二:12000×(18+12+6+2x)×0.9=12000×(2x+36)×0.9=21600x+388800,

當兩種方案購房金額相等時,

24000x+384000=21600x+388800

解得x=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC,∠C=90°,AC≠BC.

(1)請用尺規(guī)作圖(不寫作法,保留作圖痕跡).
①作∠B的角平分線,與AC相交于點D;
②以點B為圓心、BC為半徑畫弧交AB于點E,連接DE.
(2)根據(jù)(1)所作的圖形,寫出一對全等三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】含45°角的直角三角板如圖放置在平面直角坐標系中,其中A(﹣2,0),B(0,1),則直線BC的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=-2x+2的圖象.

1)求A、BP三點的坐標;

2)求四邊形PQOB的面積;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則Sn的值為 . (用含n的代數(shù)式表示,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O是直線上的一點,∠AOB是直角,OE平分∠AOC

(1) 在圖①中,若∠BOD=28°,求∠AOE的度數(shù)

(2) 將圖①中的∠AOB繞頂點O順時針旋轉至圖②的位置若∠BOD=α,試用含α的式子表示∠AOE,并說明理由

(3) 繼續(xù)旋轉AOB至圖③的位置,若∠BOD=α,其他條件不變,試將圖形補充完整,求∠AOE的度數(shù).(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點.
(1)求反比例函數(shù)的表達式;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標;
(3)求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD>AB.
(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備開展“陽光體育活動”,決定開設以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學生必須且只能選擇一項,為了解選擇各種體育活動項目的學生人數(shù),隨機抽取了部分學生進行調查,并將通過調查獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:

(1)這次活動一共調查了名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于度;
(4)若該學校有1500人,請你估計該學校選擇足球項目的學生人數(shù)約是人.

查看答案和解析>>

同步練習冊答案