【題目】閱讀理解:所謂完全平方式,就是對(duì)于一個(gè)整式A,如果存在另一個(gè)整式B,使得A=B2 , 則稱A是完全平方式,例如a4=(a2)2 , 4a2﹣4a+1=(2a﹣1)2 .
(1)下列各式中完全平方式的編號(hào)有①a6;②a2+ab+b2;③x2﹣4x+4y2④m2+6m+9;⑤x2﹣10x﹣25;⑥4a2+2ab+ .
(2)若4x2+xy+my2和x2﹣nxy+64y2都是完全平方式,求m2015n2016的值;
(3)多項(xiàng)式49x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)完全平方式,那么加上的單項(xiàng)式可以是哪些?(請(qǐng)羅列出所有可能的情況,直接寫出答案)
【答案】
(1)①④⑥
(2)解:∵4x2+xy+my2和x2﹣mxy+64y2都是完全平方式,∴m= ,n=±16,則原式=( ×16)2015×16=16
(3)解:多項(xiàng)式49x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)完全平方式,那么加上的單項(xiàng)式可以是14x,﹣14x,﹣1,﹣49x2 ,
【解析】解:①a6=(a3)2是②a2+ab+b不是
③x2-4x+4y2,不是
④m2+6m+9=(m+3)2,是
⑤x2-10x-25,不是
⑥4a2+42ab+- b2=(2a+ b)2是
故答案為:①④⑥
(1)根據(jù)完全平方式的特點(diǎn)可判斷;(2)根據(jù)完全平方式的特點(diǎn)可求出m、n的值,再將m、n的值代入代數(shù)式即可求解;(3)根據(jù)完全平方式的特點(diǎn)可得解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°AB=8cm,cos∠ABC=,點(diǎn)D在邊AC上,且CD=cm,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以1cm/s的速度移動(dòng),當(dāng)點(diǎn)P到達(dá)B點(diǎn)即停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).解答下列問(wèn)題:
(1)M、N分別是DP、BP的中點(diǎn),連接MN.
①分別求BC、MN的值;
②求在點(diǎn)P從點(diǎn)A勻速運(yùn)動(dòng)到點(diǎn)B的過(guò)程中線段MN所掃過(guò)區(qū)域的面積;
(2)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使BD平分∠CDP?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常?梢缘玫揭恍┯杏玫氖阶,或可以求出一些不規(guī)則圖形的面積.
(1)如圖1,是將幾個(gè)面積不等的小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為a+b+c的正方形,試用不同的方法計(jì)算這個(gè)圖形的面積,你能發(fā)現(xiàn)什么結(jié)論,請(qǐng)寫出來(lái).
(2)如圖2,是將兩個(gè)邊長(zhǎng)分別為a和b的正方形拼在一起,B、C、G三點(diǎn)在同一直線上,連接BD和BF,若兩正方形的邊長(zhǎng)滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有( )
A.6個(gè)
B.5個(gè)
C.4個(gè)
D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,根據(jù)圖形填空.
(1)∠A和是同位角;
(2)∠B和是內(nèi)錯(cuò)角;
(3)∠A和是同旁內(nèi)角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com