年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知,在△ABC中,AD為∠BAC的平分線,點(diǎn)E在BC的延長線上,且∠EAC=∠B,以DE為直徑的半圓交AD于點(diǎn)F,交AE于點(diǎn)M.
(1)判斷AF與DF的數(shù)量關(guān)系,并說明理由;
(2)只用無刻度的直尺畫出△ADE的邊DE上的高AH;
(3)若EF=4,DF=3,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,平行四邊形ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE折疊,使點(diǎn)A正好與CD上的F點(diǎn)重合,若△FDE的周長為16,△FCB的周長為28,則FC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某學(xué)習(xí)小組想了解南京市“迎青奧”健身活動的開展情況,準(zhǔn)備采用以下調(diào)查方式中的一種進(jìn)行調(diào)查:①從一個社區(qū)隨機(jī)選取200名居民;②從一個城鎮(zhèn)的不同住宅樓中隨機(jī)選取200名居民;③從該市公安局戶籍管理處隨機(jī)抽取200名城鄉(xiāng)居民作為調(diào)查對象.
(1)在上述調(diào)查方式中,你認(rèn)為最合理的是 (填序號);
(2)由一種比較合理的調(diào)查方式所得到的數(shù)據(jù)制成了如圖所示的頻數(shù)分布直方圖,請直接寫出這200名居民健身時間的眾數(shù)、中位數(shù);
(3)小明在求這200名居民每人健身時間的平均數(shù)時,他是這樣分析的:
小明的分析正確嗎?如果不正確,請求出正確的平均數(shù);
(4)若我市有800萬人,估計我市每天鍛煉2小時及以上的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在邊長為3 cm的正方形ABCD中,點(diǎn)E為BC邊上的任意一點(diǎn),AF⊥AE,AF交CD的延長線于F,則四邊形AFCE的面積為 cm 2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一次聚餐中,小明發(fā)現(xiàn)用圓形鐵盤加熱食物時,鐵盤邊緣部分的食物先熟,中間部分的食物后熟,說明鐵盤不同位置的溫度有差異.針對這一現(xiàn)象,他收集了如下統(tǒng)計圖表:
表一 正多邊形鐵盤溫度方差表 圖一 正多邊形鐵盤溫度分布統(tǒng)計圖(部分)
正多邊形邊數(shù) | 邊緣溫度方差 | 整體溫度方差 |
4 | 2.30 | 4.73 |
6 | 0.34 | 3.05 |
8 | 0.10 | 2.60 |
10 | 0.05 | 2.52 |
12 | 0.02 | 2.51 |
無窮多:圓 | 0.00 | 2.30 |
(1)表一中,隨著正多邊形邊數(shù)的增加,邊緣溫度方差如何變化?邊緣溫度最穩(wěn)定的是哪一種形狀的鐵盤?
(2)圖一中,最有可能表示圓形鐵盤溫度分布的曲線序號是 .
(3)已知各正多邊形(包含圓)的面積相等.圖一中點(diǎn)A、B的數(shù)值對應(yīng)曲線的端點(diǎn),點(diǎn)O表示正多邊形中心.觀察圖一,下列說法正確的有 .(填寫正確選項的序號)
a.可以看出,曲線②表示的整體溫度比曲線③表示的整體溫度穩(wěn)定.
b.OA與OB長度不同,其意義是不同正多邊形的頂點(diǎn)距各自中心的距離不同.
c.曲線②表示的鐵盤的邊數(shù)比曲線①表示的鐵盤的邊數(shù)少.
d.如果曲線①代表正四邊形,且OA2︰OB2=3︰4,那么曲線②可以代表正六邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com