【題目】如圖,已知直線, 軸于點,上的點,以為邊作正方形恰好落在上,已知,則的值為( )

A.B.C.D.

【答案】B

【解析】

由直線的解析式可知tanOMN=,結(jié)合正方形的性質(zhì)可得到∠OAB=OMN=NBC,在RtBCN中,BC=2tanNBC=,則BN= ;在RtBOA中,BA=2tanOAB=,則BO= ;又由b=ON即可求解.

解:∵直線y=xb

tanOMN=,

∵正方形ABCD

ABCD,

∴∠OAB=OMN=NBC

AB=2,

BC=AD=2,

RtBCN中,BC=2,tanNBC=

BN=

RtBOA中,BA=2,tanOAB=,

BO=,

b0,

b=ON=

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點Ax軸上,點B在直線x=3上,直線x=3x軸交于點C

(1)求拋物線的解析式;

(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當(dāng)其中一點到達終點時,另一個點也隨之停止運動,設(shè)運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.

①當(dāng)t為何值時,矩形PQNM的面積最?并求出最小面積;

②直接寫出當(dāng)t為何值時,恰好有矩形PQNM的頂點落在拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過點DDEAB于點E,點F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形;

(2)已知∠DAB=60°,AF是∠DAB的平分線,若AD=3,求DC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A2,0)、B6,0),以AB為直徑作⊙M,射線OF交⊙ME、F兩點,C為弧AB的中點,DEF的中點.當(dāng)射線OFO點旋轉(zhuǎn)時,CD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+(4a1)x4x軸交于點A、B,與y軸交于點C,且OC=2OB,點D為線段OB上一動點(不與點B重合),過點D作矩形DEFH,點HF在拋物線上,點Ex軸上.

1)求拋物線的解析式;

2)當(dāng)矩形DEFH的周長最大時,求矩形DEFH的面積;

3)在(2)的條件下,矩形DEFH不動,將拋物線沿著x軸向左平移m個單位,拋物線與矩形DEFH的邊交于點M、N,連接MN.若MN恰好平分矩形DEFH的面積,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點,且∠AEC=∠DCE,則下列結(jié)論不正確的是(  )

A.SAFD2SEFBB.BFDF

C.AEDCD.AEB=∠ADC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在下列條件下,不是直角三角形的是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象信息,當(dāng)t=________分鐘時甲乙兩人相遇,甲的速度為________/分鐘;

(2)求出線段AB所表示的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點,拋物線軸從左到右的交點為,

1)若拋物線經(jīng)過點,求拋物線的解析式和頂點坐標(biāo);

2)當(dāng)時,求的值;

3)直線經(jīng)過點,與軸交于點,

①求點的坐標(biāo);

②若線段與拋物線有唯一公共點,直接寫出正整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案