作業(yè)寶某校九年級(jí)的一場(chǎng)籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時(shí)離地面高數(shù)學(xué)公式m,與籃圈中心的水平距離7m.當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.
(l)建立如圖的平面直角坐標(biāo)系,求出此軌跡所在拋物線的解析式.
(2)問此球能否準(zhǔn)確投中?
(3)此時(shí),若對(duì)方隊(duì)員乙在甲前面2m 處跳起蓋帽攔截,已知乙的最大摸高為3.lm,那么他能否攔截成功?為什么?

解:(1)根據(jù)題意,球出手點(diǎn)、最高點(diǎn)和籃圈的坐標(biāo)分別為:
A(0,),B(4,4),C(7,3)
設(shè)二次函數(shù)解析式為y=a(x-h)2+k,
將點(diǎn)(0,)代入可得:16a+4=
解得:a=-,
∴拋物線解析式為:y=-(x-4)2+4;

(2)將C(7,3)點(diǎn)坐標(biāo)代入拋物線解析式得:
∴-(7-4)2+4=3
∴左邊=右邊
即C點(diǎn)在拋物線上,
∴此球一定能投中;

(3)不能攔截成功,
理由:將x=2代入y=-(x-4)2+4得y=3
∵3>3.1
∴他不能攔截成功.
分析:(1)根據(jù)拋物線的頂點(diǎn)坐標(biāo)及球出手時(shí)的坐標(biāo),可確定拋物線的解析式;
(2)令x=7,求出y的值,與3m比較即可作出判斷;
(3)將x=2代入y=-(x-4)2+4得y=3進(jìn)而得出答案.
點(diǎn)評(píng):本題考查了二次函數(shù)解析式的求法,及其實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某校九年級(jí)的一場(chǎng)籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時(shí)離地面高
209
m,與籃圈中心的水平距離7m.當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.
(l)建立如圖的平面直角坐標(biāo)系,求出此軌跡所在拋物線的解析式.
(2)問此球能否準(zhǔn)確投中?
(3)此時(shí),若對(duì)方隊(duì)員乙在甲前面2m 處跳起蓋帽攔截,已知乙的最大摸高為3.lm,那么他能否攔截成功?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校九年級(jí)的一場(chǎng)籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時(shí)離地面高
209
m,與籃圈中心的水平距離7m.當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.
(l)建立如圖的平面直角坐標(biāo)系,求出此軌跡所在拋物線的解析式.
(2)問此球能否準(zhǔn)確投中?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課程 新理念 新思維·同步練習(xí)篇·數(shù)學(xué) 九年級(jí)下冊(cè)(蘇教版) 蘇教版 題型:044

某校九年級(jí)的一場(chǎng)籃球比賽中,如圖所示,隊(duì)員甲正在投籃,已知球出手時(shí)離地面高m,與籃圈中心的水平距離為7 m,當(dāng)球出手后水平距離為4 m時(shí)到達(dá)最大高度4 m.設(shè)籃球的運(yùn)動(dòng)軌跡為拋物線,籃圈距地面3 m.

(1)請(qǐng)你建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并判定此球能否準(zhǔn)確投中?

(2)此時(shí),若對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為2.9 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校九年級(jí)的一場(chǎng)籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時(shí)離地面高數(shù)學(xué)公式m,與籃圈中心的水平距離7m.當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.
(l)建立如圖的平面直角坐標(biāo)系,求出此軌跡所在拋物線的解析式.
(2)問此球能否準(zhǔn)確投中?

查看答案和解析>>

同步練習(xí)冊(cè)答案