精英家教網 > 初中數學 > 題目詳情
如圖,⊙O的半徑為3,圓心O在正三角形的邊AB上沿圖示方向移動,當⊙O移動到與AC邊相切時,OA的長為( )

A.2
B.3
C.6
D.
【答案】分析:連接OD,利用AC與⊙O相切于點D,△ABC為正三角形,可求得sin∠A=,利用特殊角的三角函數值可求得OA=2
解答:解:如圖,連接OD.
∵AC與⊙O相切于點D,
∴∠ADO=90°.
∵△ABC為正三角形,
∴∠A=60°.
∴sin∠A=

∴OA=2
故選A.
點評:此題考查了圓的切線的性質及三角函數的定義的應用,解題時要注意數形結合.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O的半徑為
5
,圓心與坐標原點重合,在直角坐標系中,把橫坐標、縱坐標都是整數的點稱為格點,則⊙O上格點有
 
個,設L為經過⊙O上任意兩個格點的直線,則直線L同時經過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側,AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習冊答案