【題目】如圖,正方形OABC的邊長(zhǎng)為2,以O為圓心,EF為直徑的半圓經(jīng)過(guò)點(diǎn)A,連接AE、CF相交于點(diǎn)P.將正方形OABC從OA與OF重合的位置開(kāi)始,繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的過(guò)程中,線段OP的最小值為_____.
【答案】2﹣2.
【解析】
如圖點(diǎn)P運(yùn)動(dòng)的路徑是以G為圓心的弧,在⊙G上取一點(diǎn)H,連接EH、FH,只要證明∠EGF=90°,求出GE的長(zhǎng),根據(jù)OP≥PGOG即可解決問(wèn)題.
解:如圖點(diǎn)P運(yùn)動(dòng)的路徑是以G為圓心的弧,在⊙G上取一點(diǎn)H,連接EH、FH.,連接OP,PG.
∵四邊形AOCB是正方形,
∴∠AOC=90°,
∴∠AFP=∠AOC=45°,
∵EF是⊙O直徑,
∴∠EAF=90°,
∴∠APF=∠AFP=45°,
∴∠EPF=135°,
∵EF是定值,
∴點(diǎn)P在以點(diǎn)G為圓心,GE為半徑的圓上,
∴∠H=∠APF=45°,
∴∠EGF=2∠H=90°,
∵EF=4,GE=GF,
∴EG=GF=2,
∵OG=OE=2,PG=2,
∴OP≥PG﹣OG
∴OP≥2﹣2,
∴OP的最小值為2﹣2.
故答案為2﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)為常數(shù),且)中的與的部分對(duì)應(yīng)值如表:
··· | ··· | |||||
··· | ··· |
下列結(jié)論錯(cuò)誤的是( )
A.B.是關(guān)于的方程的一個(gè)根;
C.當(dāng)時(shí),的值隨值的增大而減;D.當(dāng)時(shí),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,是的中點(diǎn),與分別交于點(diǎn).
(1)求證:.
(2)求證:;
(3)若的直徑,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知三角形紙片△ABC和△DEF重合在一起,AB=AC,DE=DF,△ABC≌△DEF.?dāng)?shù)學(xué)實(shí)驗(yàn)課上,張老師讓同學(xué)們用這兩張紙片進(jìn)行如下操作:
(1)(操作探究1)保持△ABC不動(dòng),將△DEF沿射線BC方向平移至圖2所示位置,通過(guò)度量發(fā)現(xiàn)BE:CE=1:2,則S△CGE:S△CAB= ;
(2)(操作探究2)保持△ABC不動(dòng),將△DEF通過(guò)一次全等變換(平移、旋轉(zhuǎn)或翻折后和△ABC拼成以BC為一條對(duì)角線的菱形,請(qǐng)用語(yǔ)言描述你的全等變換過(guò)程.
(3)(操作探究3)將兩個(gè)三角形按圖3所示放置:點(diǎn)C與點(diǎn)F重合,AB∥DE.保持△ABC不動(dòng),將△DEF沿射線DA方向平移.若AB=13,BC=10,設(shè)△DEF平移的距離為m.
①當(dāng)m=0時(shí),連接AD、BE,判斷四邊形ABED的形狀并說(shuō)明理由;
②在平移的過(guò)程中,四邊形ABED能否成為正方形?若能,請(qǐng)求出m的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,直線y=-2x+4交x軸、y軸于A,B兩點(diǎn),交雙曲線y=(x<0)于C點(diǎn),△OAC的面積為6.
(1)求雙曲線的解析式;
(2)如圖②,D為雙曲線y=(x<0)上一點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得線段DE,點(diǎn)E恰好落在x軸上,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=BC,以BC為直徑作⊙O,AC交⊙O于點(diǎn)E,過(guò)點(diǎn)E作EG⊥AB于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:EG是⊙O的切線;
(2)若GF=2,GB=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接:“國(guó)家衛(wèi)生城市”復(fù)檢,某市環(huán)衛(wèi)局準(zhǔn)備購(gòu)買A,B兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需540元,購(gòu)買2個(gè)A型垃圾箱比購(gòu)買3個(gè)B型垃圾箱少用160元.
(1)求每個(gè)A型垃圾箱和B型垃圾箱各多少元?
(2)該市現(xiàn)需要購(gòu)買A,B兩種型號(hào)的垃圾箱共30個(gè),其中買A型垃圾箱不超過(guò)16個(gè).
①求購(gòu)買垃圾箱的總花費(fèi)w(元)與A型垃圾箱x(個(gè))之間的函數(shù)關(guān)系式;
②當(dāng)買A型垃圾箱多少個(gè)時(shí)總費(fèi)用最少,最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技有限公司準(zhǔn)備購(gòu)進(jìn)A和B兩種機(jī)器人來(lái)搬運(yùn)化工材料,已知購(gòu)進(jìn)A種機(jī)器人2個(gè)和B種機(jī)器人3個(gè)共需16萬(wàn)元,購(gòu)進(jìn)A種機(jī)器人3個(gè)和B種機(jī)器人2個(gè)共需14萬(wàn)元,請(qǐng)解答下列問(wèn)題:
(1)求A、B兩種機(jī)器人每個(gè)的進(jìn)價(jià);
(2)已知該公司購(gòu)買B種機(jī)器人的個(gè)數(shù)比購(gòu)買A種機(jī)器人的個(gè)數(shù)的2倍多4個(gè),如果需要購(gòu)買A、B兩種機(jī)器人的總個(gè)數(shù)不少于28個(gè),且該公司購(gòu)買的A、B兩種機(jī)器人的總費(fèi)用不超過(guò)106萬(wàn)元,那么該公司有哪幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷商銷售一種成本價(jià)為10元/kg的商品,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷售價(jià)不得高于18元/kg.在銷售過(guò)程中發(fā)現(xiàn)銷量y(kg)與售價(jià)x(元/kg)之間滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表所示:
⑴求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
⑵若該經(jīng)銷商想使這種商品獲得平均每天168元的利潤(rùn),求售價(jià)應(yīng)定為多少元/kg?
⑶設(shè)銷售這種商品每天所獲得的利潤(rùn)為W元,求W與x之間的函數(shù)關(guān)系式;并求出該商品銷售單價(jià)定為多少元時(shí),才能使經(jīng)銷商所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com