精英家教網(wǎng)如圖,⊙O過點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6.則⊙O的半徑為(  )
A、6
B、13
C、
13
D、2
13
分析:延長(zhǎng)AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.
解答:精英家教網(wǎng)解:過點(diǎn)A作等腰直角三角形BC邊上的高AD,垂足為D,
所以點(diǎn)D也為BC的中點(diǎn).
根據(jù)垂徑定理可知OD垂直于BC.所以點(diǎn)A、O、D共線.
∵⊙O過B、C,
∴O在BC的垂直平分線上,
∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,
∴AD⊥BC,BD=DC=3,AO平分∠BAC,
∵∠BAC=90°,
∴∠ADB=90°,∠BAD=45°,
∴∠BAD=∠ABD=45°,
∴AD=BD=3,
∴OD=3-1=2,
由勾股定理得:OB=
DO2+BD2
=
13

故選C.
點(diǎn)評(píng):本題主要考查對(duì)等腰三角形的性質(zhì)和判定,等腰直角三角形的性質(zhì),三角形的內(nèi)角和定理,勾股定理,垂線,垂徑定理等知識(shí)點(diǎn)的理解和掌握,求出OD、BD的長(zhǎng)是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O過點(diǎn)B、C.圓心O在等腰直角△ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為(  )
A、
10
B、2
3
C、3
2
D、
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,以點(diǎn)O為圓心,半徑為4的圓交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),點(diǎn)P為弧AC上的一動(dòng)點(diǎn),延長(zhǎng)CP交x軸于點(diǎn)E;連接PB,交OC于點(diǎn)F.
(1)若點(diǎn)F為OC的中點(diǎn),求PB的長(zhǎng);
精英家教網(wǎng)
(2)求CP•CE的值;
(3)如圖2,過點(diǎn)OH∥AP交PD于點(diǎn)H,當(dāng)點(diǎn)P在弧AC上運(yùn)動(dòng)時(shí),試問
APDH
的值是否保持不變;若不變,試證明,求出它的值;若發(fā)生變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O過點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,∠BAC=90°,OA=2,BC=8.則⊙O的半徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D是AC的中點(diǎn),F(xiàn)為邊AB上一動(dòng)點(diǎn),AF=nBF,E為直線BC上一點(diǎn),且∠EDF=120°.
 
(1)如圖1,當(dāng)n=2時(shí),求
CE
CD
=
1
3
1
3
;
(2)如圖2,當(dāng)n=
1
3
時(shí),求證:CD=2CE;
(3)如圖3,過點(diǎn)D作DM⊥BC于M,當(dāng)
n=3
n=3
時(shí),C點(diǎn)為線段EM的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖A,△ABC各角的平分線AD,BE,CF交于點(diǎn)O.
(1)試說明∠BOC=90°+
12
∠BAC;
(2)如圖B,過點(diǎn)O作OG⊥BC于G,試判斷∠BOD與∠COG的大小關(guān)系(大于,小于或等于),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案