【題目】直線(xiàn)y=kx+3和x軸、y軸的交點(diǎn)分別為B、C,∠OBC=30°,點(diǎn)A的坐標(biāo)是(,0),另一條直線(xiàn)經(jīng)過(guò)點(diǎn)A、C.
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)求證:AC⊥BC;
(3)點(diǎn)M為直線(xiàn)BC上一點(diǎn)(與點(diǎn)B不重合),設(shè)點(diǎn)M的橫坐標(biāo)為x,△ABM的面積為S.
①求S與x的函數(shù)關(guān)系式;
②當(dāng)S=6時(shí),求點(diǎn)M的坐標(biāo).
【答案】(1)B(3,0),k=﹣;(2)見(jiàn)解析;(3)①S=;②點(diǎn)M的坐標(biāo)為(0,3)或(6,-3).
【解析】
(1)直線(xiàn)y=kx+3和y軸的交點(diǎn)為C,則點(diǎn)C(0,3),則BC=6,OB=3,則點(diǎn)B(3,0),即可求解;
(2)OA=,OC=3,則AC=2,則∠ACO=30°,即可求解;
(3)①點(diǎn)M(x,-x+3),S=×AB×|yM|即可求解;
②將S=6代入①中的函數(shù)關(guān)系式,即可求解.
解:(1)直線(xiàn)y=kx+3和y軸的交點(diǎn)為C,則點(diǎn)C(0,3),
則BC=6,OB=3,
則點(diǎn)B(3,0),
將點(diǎn)B的坐標(biāo)代入y=kx+3得:0=3k+3,
解得:k= -;
(2)在Rt△AOC中,OA=,OC=3,由勾股定理得AC=2,
∴∠ACO=30°,
∵∠OBC=30°,
∴∠BCO=60°,
∴∠ACB=∠ACO+∠BCO=90°,
∴AC⊥BC;
(3)①直線(xiàn)BC的表達(dá)式為:y=﹣x+3,則點(diǎn)M(x,﹣x+3),
S=×AB×|yM|=×4×|﹣x+3|,即:S=;
②當(dāng)S=6時(shí),
∵S=
∴或
解得:x=0或x=6,
故點(diǎn)M的坐標(biāo)為(0,3)或(6,-3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ECD均為等邊三角形,B、C、D三點(diǎn)在一直線(xiàn)上,AD、BE相交于點(diǎn)F,DF=3,AF=4,則線(xiàn)段FE的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象開(kāi)口向上,圖象經(jīng)過(guò)點(diǎn)(-1,2)和(1,0),且與y
軸相交于負(fù)半軸。給出四個(gè)結(jié)論:①;②;③;④ ,其中正確結(jié)論的序
號(hào)是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線(xiàn)交弧AB于點(diǎn)C,交弦AB于點(diǎn)D.已知AB=24cm,CD=8cm.
(1)求作此殘片所在的圓(不寫(xiě)作法,保留作圖痕跡)
(2)求殘片所在圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500元.市場(chǎng)調(diào)研表明:當(dāng)銷(xiāo)售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷(xiāo)售價(jià)每降低50元時(shí),平均每天就能多售出4部.
(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷(xiāo)售利潤(rùn)達(dá)到多少元?
(2)若設(shè)每部手機(jī)降低x元,每天的銷(xiāo)售利潤(rùn)為y元,試寫(xiě)出y與x之間的函數(shù)關(guān)系式.
(3)商場(chǎng)要想獲得最大利潤(rùn),每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形ABCD為正方形,點(diǎn)E,F分別在AB與BC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).
(1)如圖②,在四邊形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,點(diǎn)E,F分別在AB與BC上,且∠EDF=60°.猜想AE,CF與EF之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖③,在四邊形ABCD中,∠ADC=2α,DA=DC,∠DAB與∠BCD互補(bǔ),點(diǎn)E,F分別在AB與BC上,且∠EDF=α,請(qǐng)直接寫(xiě)出AE,CF與EF之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線(xiàn)相交于F點(diǎn).
(1)若∠BAC=60°,∠C=70°,求∠AFB的大。
(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=3x與雙曲線(xiàn)y= (k≠0,且x>0)交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)是1.
(1)求點(diǎn)A的坐標(biāo)及雙曲線(xiàn)的解析式;
(2)點(diǎn)B是雙曲線(xiàn)上一點(diǎn),且點(diǎn)B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B.
(1)求證:AD是⊙O的切線(xiàn).
(2)若BC=8,tanB=,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com