【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點(diǎn),F(xiàn)是線段BC上的動(dòng)點(diǎn),將△EBF沿EF所在直線折疊得到△EB′F,連接B′D,則B′D的最小值是( 。
A.2﹣2
B.6
C.2﹣2
D.4
【答案】A
【解析】解:如圖,
當(dāng)∠BFE=∠DEF,點(diǎn)B′在DE上時(shí),此時(shí)B′D的值最小,
根據(jù)折疊的性質(zhì),△EBF≌△EB′F,
∴EB′⊥FD,
∴EB′=EB,
∵E是AB邊的中點(diǎn),AB=4,
∴AE=EB′=2,
∵AB=6,
∴DE==2,
∴DB′=2﹣2.
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的翻折變換(折疊問題),需要了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點(diǎn)D是BC的中點(diǎn),將△ABD沿AD翻折得到△AED,連CE,則線段CE的長等于( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用10000元購進(jìn)A,B兩種新式服裝,按標(biāo)價(jià)售出后可獲得毛利潤5400元(毛利潤=售價(jià)﹣進(jìn)價(jià)),這兩種服裝的進(jìn)價(jià)、標(biāo)價(jià)如表所示:
類型、價(jià)格 | A型 | B型 |
進(jìn)價(jià)(元/件) | 80 | 100 |
標(biāo)價(jià)(元/件) | 120 | 160 |
(1)這兩種服裝各購進(jìn)的件數(shù);
(2)如果A種服裝按標(biāo)價(jià)的8折出售,要使這批服裝全部售出后毛利潤不低于2000元,則B種服裝至多按標(biāo)價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段a,b,c,用直尺和圓規(guī)畫圖(保留畫圖痕跡,并用字母表示出所畫的線段).
(1)畫一條線段,使它等于a+b;(2)畫一條線段,使它等于a-c.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,若大正方形的邊長為a,小正方形的邊長為b,則陰影部分的面積是 ;若如圖中的陰影部分剪下來,重新拼疊成如圖的一個(gè)矩形,則它長為 ;寬為 ;面積為 .
(2)由(1)可以得到一個(gè)公式: .
(3)利用你得到的公式計(jì)算:20192﹣2018×2020.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一條直線上依次有A、B、C三點(diǎn).
(1)若BC=60,AC=3AB,求AB的長;
(2)若點(diǎn)D是射線CB上一點(diǎn),點(diǎn)M為BD的中點(diǎn),點(diǎn)N為CD的中點(diǎn),求的值;
(3)當(dāng)點(diǎn)P在線段BC的延長線上運(yùn)動(dòng)時(shí),點(diǎn)E是AP中點(diǎn),點(diǎn)F是BC中點(diǎn),下列結(jié)論中:
①是定值;
②是定值.其中只有一個(gè)結(jié)論是正確的,請選擇正確結(jié)論并求出其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com