【題目】為迎接全國文明城市的評選,市政府決定對春風路進行市政化改造,經(jīng)過市場招標,決定聘請甲、乙兩個工程隊合作施工,已知春風路全長24千米,甲工程隊每天施工的長度比乙工程隊每天施工長度的多施工0.4千米,由甲工程隊單獨施工完成任務所需要的天數(shù)是乙工程隊單獨完成任務所需天數(shù)的.
(1)求甲、乙兩個工程隊每天各施工多少千米?
(2)若甲工程隊每天的施工費用為0.8萬元,乙工程隊每天的施工費用為0.5萬元,要使兩個工程隊施工的總費用不超過7萬元,則甲工程隊至多施工多少天?
【答案】(1)甲隊每天修2.4千米,乙隊每天修2千米;(2)甲工程隊至多施工5天.
【解析】
(1)設甲隊每天完成x千米,則乙隊每天完成(x﹣0.4)千米,然后依據(jù)甲工程隊單獨施工完成任務所需要的天數(shù)是乙工程隊單獨完成任務所需天數(shù)的列方程求解即可;
(2)設甲隊改造a米,則乙隊改造(24﹣a)米,然后依據(jù)兩個工程隊施工的總費用不超過7萬元列不等式求得a的范圍,從而可求得甲工程隊至多施工的天數(shù).
(1)設甲隊每天完成x千米,則乙隊每天完成(x﹣0.4)千米.根據(jù)題意得:
=×,
解得:x=2.4.
經(jīng)檢驗,x=2.4是原方程的解.
2.4﹣0.4=2.
答:甲隊每天修2.4千米,乙隊每天修2千米.
(2)設甲隊改造a米,則乙隊改造(24﹣a)米.根據(jù)題意得:
×0.8+×0.5≤7,
解得:a≤12.
=5.
答:甲工程隊至多施工5天.
科目:初中數(shù)學 來源: 題型:
【題目】已知三角形紙片ABC的面積為48,BC的長為8.按下列步驟將三角形紙片ABC進行裁剪和拼圖:
第一步:如圖1,沿三角形ABC的中位線DE將紙片剪成兩部分.在線段DE上任意取一點F,在線段BC上任意取一點H,沿FH將四邊形紙片DBCE剪成兩部分;
第二步:如圖2,將FH左側(cè)紙片繞點D旋轉(zhuǎn)180°,使線段DB與DA重合;將FH右側(cè)紙片繞點E旋轉(zhuǎn)180°,使線段EC與EA重合,再與三角形紙片ADE拼成一個與三角形紙片ABC面積相等的四邊形紙片.
圖1 圖2
(1)當點F,H在如圖2所示的位置時,請按照第二步的要求,在圖2中補全拼接成的四邊形;
(2)在按以上步驟拼成的所有四邊形紙片中,其周長的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的圖案是由六個全等的直角三角形組成,點O是該圖案的中心,則該圖案可看成由一個直角三角形繞O點順時針依次旋轉(zhuǎn)________得到,或可看成由兩個相鄰的直角三角形繞O點順時針依次旋轉(zhuǎn)________得到,或可看成由三個相鄰的直角三角形繞O點旋轉(zhuǎn)________得到.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=ax+c(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標系中的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).
A. OA=OC,OB=OD B. ∠BAD=∠BCD,AB∥CD
C. AD∥BC,AD=BC D. AB=CD,AO=CO
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了參加學校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:
(1)該班總?cè)藬?shù)是 ;
(2)根據(jù)計算,請你補全兩個統(tǒng)計圖;
(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國式過馬路,是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關(guān)”針對這種現(xiàn)象某媒體記者在多個路口采訪闖紅燈的行人,得出形成這種現(xiàn)象的四個基本原因:①紅綠燈設置不科學,交通管理混亂;②僥幸心態(tài);③執(zhí)法力度不夠;④從眾心理.該記者將這次調(diào)查情況整理并繪制了如下尚不完整的統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題.
(1)該記者本次一共調(diào)査了名行人;
(2)求圖1中④所在扇形的圓心角,并補全圖2;
(3)在本次調(diào)查中,記者隨機采訪其中的一名行人,求他屬于第②種情況的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課外興趣小組活動時,老師出示了如下問題:如圖①,已知在四邊形ABCD中,AC平分∠DAB,∠DAB=60°,∠B與∠D互補,求證:AB+AD=AC.
小敏反復探索,不得其解.她想,可先將四邊形ABCD特殊化,再進一步解決該問題.
(1)由特殊情況入手,添加條件:“∠B=∠D”,如圖②,可證AB+AD=AC.請你完成此證明.
(2)受到(1)的啟發(fā),在原問題中,添加輔助線:過C點分別作AB,AD的垂線,垂足分別為點E,F(xiàn),如圖③.請你補全證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com