【題目】問題提出
(1)如圖①,在中,,求的面積.
問題探究
(2)如圖②,半圓的直徑,是半圓的中點,點在上,且,點是上的動點,試求的最小值.
問題解決
(3)如圖③,扇形的半徑為在選點,在邊上選點,在邊上選點,求的長度的最小值.
【答案】(1)12;(2);(3).
【解析】
(1)如圖1中,過點作,交延長線于點,通過構造直角三角形,求出BD利用三角形面積公式求解即可.
(2)如圖示,作點關于的對稱點,交于點,連接,交于點,連接、、,過點作,交延長線于點,確定點P的位置,利用勾股定理與矩形的性質求出CQ的長度即為答案.
(3)解圖3所示,在上這一點作點關于的對稱點,作點關于的對稱點,連接,交于點,交于點,連接,通過軸對稱性質的轉化,最終確定最小值轉化為SN的長.
(1)如解圖1所示,過點作,交延長線于點,
,
,
,交延長線于點,
為等腰直角三角形,且,
,
在中,,
,即,
,
,解得:,
,
.
(2)如解圖2所示,作點關于的對稱點,交于點,連接,交于點,連接、、,過點作,交延長線于點,
關于的對稱點,交于點,
,
,
點為上的動點,
,
當點處于解圖2中的位置,取最小值,且最小值為的長度,
點為半圓的中點,
,
,
,
,
,
在中,由作圖知,,且,
,
,
由作圖知,四邊形為矩形,
,
,
,
的最小值為.
(3)如解圖3所示,在上這一點作點關于的對稱點,作點關于的對稱點,連接,交于點,交于點,連接,
點關于的對稱點,點關于的對稱點,連接,交于點,交于點,
,,,
,
.,
,
為上的點,為上的點
,
當點處于解圖3的位置時,的長度取最小值,最小值為的長度,
,
,
.
扇形的半徑為,
,
在中,,
的長度的最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點和點,與軸交于點,以為邊在軸上方作正方形,點是軸上一動點,連接,過點作的垂線與軸交于點.
(1)求該拋物線的函數(shù)關系表達式;
(2)當點在線段(點不與重合)上運動至何處時,線段的長有最大值?并求出這個最大值;
(3)在第四象限的拋物線上任取一點,連接.請問:的面積是否存在最大值?若存在,求出此時點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結論中一定成立的是_____(把所有正確結論的序號部填在橫線上).①∠AEF=∠DFE;②S△BEC=2S△CEF;③EF=CF;④∠BCD=2∠DCF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:連結菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.
(1)判斷下列命題是真命題,還是假命題?
①正方形是自相似菱形;
②有一個內角為60°的菱形是自相似菱形.
③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.
(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點.
①求AE,DE的長;
②AC,BD交于點O,求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家自2016年1月1日起實行全面放開二胎政策,某計生組織為了解該市家庭對待這項政策的態(tài)度,準備采用以下調查方式中的一種進行調查:
A.從一個社區(qū)隨機選取1 000戶家庭調查;
B.從一個城鎮(zhèn)的不同住宅樓中隨機選取1 000戶家庭調查;
C.從該市公安局戶籍管理處隨機抽取1 000戶城鄉(xiāng)家庭調查.
(1)在上述調查方式中,你認為比較合理的一個是【1】.(填“A”、“B”或“C”)
(2)將一種比較合理的調查方式調查得到的結果分為四類:(A)已有兩個孩子;
(B)決定生二胎;(C)考慮之中;(D)決定不生二胎.將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
請根據以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
①補全條形統(tǒng)計圖.
②估計該市100萬戶家庭中決定不生二胎的家庭數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一套數(shù)學題集共有100道題,甲、乙和丙三人分別作答,每道題至少有一人解對,且每人都解對了其中的60道.如果將其中只有1人解對的題稱作難題,2人解對的題稱作中檔題,3人都解對的題稱作容易題,那么下列判斷一定正確的是( )
A.容易題和中檔題共60道B.難題比容易題多20道
C.難題比中檔題多10道D.中檔題比容易題多15道
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com