如圖①所示,已知A、B為直線l上兩點(diǎn),點(diǎn)C為直線l上方一動(dòng)點(diǎn),連接AC、BC,分別以AC、BC為邊向△ABC外作正方形CADF和正方形CBEG,過點(diǎn)D作DD1⊥l于點(diǎn)D1,過點(diǎn)E作EE1⊥l于點(diǎn)E1

(1)如圖②,當(dāng)點(diǎn)E恰好在直線l上時(shí)(此時(shí)E1與E重合),試說明DD1=AB;
(2)在圖①中,當(dāng)D、E兩點(diǎn)都在直線l的上方時(shí),試探求三條線段DD1、EE1、AB之間的數(shù)量關(guān)系,并說明理由;
(3)如圖③,當(dāng)點(diǎn)E在直線l的下方時(shí),請直接寫出三條線段DD1、EE1、AB之間的數(shù)量關(guān)系.(不需要證明)
【答案】分析:(1)由四邊形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS證得△ADD1≌△CAB,根據(jù)全等三角形的對應(yīng)邊相等,即可得DD1=AB;
(2)首先過點(diǎn)C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四邊形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS證得△ADD1≌△CAH,根據(jù)全等三角形的對應(yīng)邊相等,即可得DD1=AH,同理EE1=BH,則可得AB=DD1+EE1
(3)證明方法同(2),易得AB=DD1-EE1
解答:(1)證明:∵四邊形CADF、CBEG是正方形,
∴AD=CA,∠DAC=∠ABC=90°,
∴∠DAD1+∠CAB=90°,
∵DD1⊥AB,
∴∠DD1A=∠ABC=90°,
∴∠DAD1+∠ADD1=90°,
∴∠ADD1=∠CAB,
在△ADD1和△CAB中,
,
∴△ADD1≌△CAB(AAS),
∴DD1=AB;

(2)解:AB=DD1+EE1
證明:過點(diǎn)C作CH⊥AB于H,
∵DD1⊥AB,
∴∠DD1A=∠CHA=90°,
∴∠DAD1+∠ADD1=90°,
∵四邊形CADF是正方形,
∴AD=CA,∠DAC=90°,
∴∠DAD1+∠CAH=90°,
∴∠ADD1=∠CAH,
在△ADD1和△CAH中,
,
∴△ADD1≌△CAH(AAS),
∴DD1=AH;
同理:EE1=BH,
∴AB=AH+BH=DD1+EE1;

(3)解:AB=DD1-EE1
證明:過點(diǎn)C作CH⊥AB于H,
∵DD1⊥AB,
∴∠DD1A=∠CHA=90°,
∴∠DAD1+∠ADD1=90°,
∵四邊形CADF是正方形,
∴AD=CA,∠DAC=90°,
∴∠DAD1+∠CAH=90°,
∴∠ADD1=∠CAH,
在△ADD1和△CAH中,

∴△ADD1≌△CAH(AAS),
∴DD1=AH;
同理:EE1=BH,
∴AB=AH-BH=DD1-EE1
點(diǎn)評:此題考查了正方形的性質(zhì)與全等三角形的判定與性質(zhì).此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖9所示,已知:∠α、線段a,求作等腰三角形△ABC,使腰長AB=a,底角∠A=∠α.(要求寫出作法,并保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石)如圖1所示,已知直線y=kx+m與x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、C兩點(diǎn),點(diǎn)B是拋物線與x軸的另一個(gè)交點(diǎn),當(dāng)x=-
1
2
時(shí),y取最大值
25
4

(1)求拋物線和直線的解析式;
(2)設(shè)點(diǎn)P是直線AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線y=
1
2
x+a與(1)中所求的拋物線交于點(diǎn)M、N,兩點(diǎn),問:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.
②猜想當(dāng)∠MON>90°時(shí),a的取值范圍.(不寫過程,直接寫結(jié)論)
(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點(diǎn)之間的距離為|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•義烏市)如圖1所示,已知y=
6
x
(x>0)圖象上一點(diǎn)P,PA⊥x軸于點(diǎn)A(a,0),點(diǎn)B坐標(biāo)為(0,b)(b>0),動(dòng)點(diǎn)M是y軸正半軸上B點(diǎn)上方的點(diǎn),動(dòng)點(diǎn)N在射線AP上,過點(diǎn)B作AB的垂線,交射線AP于點(diǎn)D,交直線MN于點(diǎn)Q連接AQ,取AQ的中點(diǎn)為C.
(1)如圖2,連接BP,求△PAB的面積;
(2)當(dāng)點(diǎn)Q在線段BD上時(shí),若四邊形BQNC是菱形,面積為2
3
,求此時(shí)P點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)Q在射線BD上時(shí),且a=3,b=1,若以點(diǎn)B,C,N,Q為頂點(diǎn)的四邊形是平行四邊形,求這個(gè)平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示為一上面無蓋的正方體紙盒,現(xiàn)將其剪開展成平面圖,如圖2精英家教網(wǎng)所示.已知展開圖中每個(gè)正方形的邊長為1.
(1)求在該展開圖中可畫出最長線段的長度這樣的線段可畫幾條?
(2)試比較立體圖中∠BAC與平面展開圖中∠B′A′C′的大小關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)試說明:△ABC≌△FED;
(2)若圖形經(jīng)過平移和旋轉(zhuǎn)后得到圖2,且有∠EDB=25°,∠A=66°,試求∠AMD的度數(shù);
(3)將圖形繼續(xù)旋轉(zhuǎn)后得到圖3,此時(shí)D,B,F(xiàn)三點(diǎn)在同一條直線上,若DB=2DF,連接EB,已知△EFB的面積為5cm2,你能求出四邊形ABED的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案