【題目】如圖,在ABC中,點D、E分別在邊ABAC上,AE2ADAB,∠ABE=∠ACB

1)求證:DEBC;

2)如果SADES四邊形DBCE18,求SADESBDE的值.

【答案】1)見解析;(2SADESBDE=12.

【解析】

1)根據(jù)已知條件得到,根據(jù)相似三角形的性質得到∠AED=∠ABE,根據(jù)平行線的判定定理即可得到結論;

2)根據(jù)相似三角形的性質得到,由已知條件得到,根據(jù)相似三角形的性質即可得到結論.

1)證明:∵AE2ADAB,

又∵∠EAD=∠BAE,

∴△AED∽△ABE,

∴∠AED=∠ABE,

∵∠ABE=∠ACB,

∴∠AED=∠ACB,

DEBC;

2)∵DEBC,

∴△ADE∽△ABC,

,

,

,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=35cm,(點A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點D,AE∥DN,某一時刻,點B距離水平面38cm,點C距離水平面59cm.

(1)求圓形滾輪的半徑AD的長;

(2)當人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點C處且拉桿達到最大延伸距離時,點C距離水平地面73.5cm,求此時拉桿箱與水平面AE所成角∠CAE的大。ň_到1°,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于直徑為1厘米的O,若∠BAD90°,BCa厘米,CDb厘米,則下列結論正確的有(  )

①sinBACa,②cosBACb,③tanBAC

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,,,.的邊上或內部運動,過點分別向邊、所在直線作垂線,交射線于點,交邊于點.

1)求邊的長.

2)求線段的取值范圍.

3)當點的邊上運動時,若,直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若兩個不重合的二次函數(shù)圖象關于軸對稱,則稱這兩個二次函數(shù)為“關于軸對稱的二次函數(shù)”.

(1)請寫出兩個“關于軸對稱的二次函數(shù)”;

(2)已知兩個二次函數(shù)是“關于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,線段AB的端點坐標為A-2,4),B4,2),直線y=kx-2與線段AB有交點,則K的值不可能是(

A. -5B. -2C. 3D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α45°,從樓底B1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β30°.已知樹高EF=6米,求塔CD的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊ABy軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌手機去年每臺的售價y(元)與月份x之間滿足函數(shù)關系:y=﹣50x+2600,去年的月銷量p(萬臺)與月份x之間成一次函數(shù)關系,其中1﹣6月份的銷售情況如下表:

月份(x)

1月

2月

3月

4月

5月

6月

銷售量(p)

3.9萬臺

4.0萬臺

4.1萬臺

4.2萬臺

4.3萬臺

4.4萬臺

(1)求p關于x的函數(shù)關系式;

(2)求該品牌手機在去年哪個月的銷售金額最大?最大是多少萬元?

(3)今年1月份該品牌手機的售價比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經(jīng)銷商決定對該手機以1月份價格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺.若今年2月份這種品牌手機的銷售額為6400萬元,求m的值.

查看答案和解析>>

同步練習冊答案