精英家教網 > 初中數學 > 題目詳情

【題目】為了解我市的空氣質量情況,某環(huán)保興趣小組從環(huán)境監(jiān)測網隨機抽取了若干天的空氣質量情況作為樣本進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
請你根據圖中提供的信息,解答下列問題:
(1)計算被抽取的天數;
(2)請補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“優(yōu)”的扇形的圓心角度數;
(3)請估計該市這一年(365天)達到“優(yōu)”和“良”的總天數.

【答案】
(1)解:扇形圖中空氣為優(yōu)所占比例為20%,條形圖中空氣為優(yōu)的天數為12天,

∴被抽取的總天數為:12÷20%=60(天)


(2)解:輕微污染天數是60﹣36﹣12﹣3﹣2﹣2=5天;

表示優(yōu)的圓心角度數是 360°=72°,

如圖所示:


(3)解:樣本中優(yōu)和良的天數分別為:12,36,

一年(365天)達到優(yōu)和良的總天數為: ×365=292(天).

故估計本市一年達到優(yōu)和良的總天數為292天


【解析】(1)根據扇形圖中空氣為優(yōu)所占比例為20%,條形圖中空氣為優(yōu)的天數為12天,即可得出被抽取的總天數;(2)輕微污染天數是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以優(yōu)所占的份額即可得優(yōu)的扇形的圓心角度數;(3)利用樣本中優(yōu)和良的天數所占比例乘以一年(365天)即可求出達到優(yōu)和良的總天數.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,我們把這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如菱形就是和諧四邊形.

(1)如圖1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求證:BD是梯形ABCD的和諧線;
(2)如圖2,在12×16的網格圖上(每個小正方形的邊長為1)有一個扇形BAC,點A.B.C均在格點上,請在答題卷給出的兩個網格圖上各找一個點D,使得以A、B、C、D為頂點的四邊形的兩條對角線都是和諧線,并畫出相應的和諧四邊形;
(3)四邊形ABCD中,AB=AD=BC,∠BAD=90°,AC是四邊形ABCD的和諧線,求∠BCD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,B=40°,C=60°,ADBC于D,AE是BAC的平分線

1DAE的度數;

2寫出以AD為高的所有三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,∠C=90°,AC=BC.作射線AP,過點BBDAP于點D,連接CD.

(1)當射線AP位于圖1所示的位置時

①根據題意補全圖形;

②求證:AD+BD=CD.

(2)當射線AP繞點A由圖1的位置順時針旋轉至∠BAC的內部,如圖2,直接寫出此時AD,BD,CD三條線段之間的數量關系為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法:一條直角邊和斜邊上的高對應相等的兩個直角三角形全等有兩條邊相等的兩個直角三角形全等若兩個直角三角形面積相等,則它們全等兩邊和其中一邊的對角對應相等的兩個三角形全等。其中錯誤的個數是:(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,連接DE.若DE:AC=3:5,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖△ABC中,∠A=96°,延長BCD,∠ABC∠ACD的平分線相交于點A1∠A1BC∠A1CD的平分線相交于點A2,依此類推,∠A4BC∠A4CD的平分線相交于點A5,∠A5的度數為(

A. 19.2° B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應關系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達終點

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2012義烏市)在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉,得到△A1BC1
(1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數;
(2)如圖2,連接AA1 , CC1 . 若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉過程中,點P的對應點是點P1 , 求線段EP1長度的最大值與最小值.

查看答案和解析>>

同步練習冊答案