【題目】如圖,BD是△ABC的外角∠ABP的角平分線,DA=DC,DE⊥BP于點E,若AB=5,BC=3,則BE的長為 _____________
【答案】1
【解析】
過點D作DF⊥AB于F,根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=DF,再利用“HL”證明△BDE和△BDF全等,△ADF和△CDE全等,根據(jù)全等三角形對應邊相等可得BE=BF,AF=CE,再用AB、BC表示出AF、CE,整理即可解得.
如圖,過點D作DF⊥AB于F,
∵BD是∠ABP的角平分線,
∴DE=DF,
在△BDE和△BDF中,
∴△BDE≌△BDF(HL),
∴BE=BF,
在△ADF和△CDE中,
∴△ADF≌△CDE(HL),
∴AF=CE,
∵AF=ABBF,
CE=BC+BE,
∴ABBF=BC+BE,
∴2BE=ABBC,
∵AB=5,BC=3,
∴2BE=53=2,
解得BE=1.
故答案為:1.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的解析式為y=ax2+bx+c(a、b、c為常數(shù),a≠0),且a2+ab+ac<0,下列說法:
①b2﹣4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有兩個不同根x1、x2 , 且(x1﹣1)(1﹣x2)>0;
④二次函數(shù)的圖象與坐標軸有三個不同交點,
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館有50個房間可供游客居住,當每個房間每天的定價為180元時,房間會全部住滿,當每個房間每天的定價增加10元時,就會有一個房間空閑,如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設每個房間的定價增加x元(x為10的整數(shù)倍),此時入住的房間數(shù)為y間,賓館每天的利潤為w元.
(1)直接寫出y(間)與x(元)之間的函數(shù)關系;
(2)如何定價才能使賓館每天的利潤w(元)最大?
(3)若賓館每天的利潤為10800元,則每個房間每天的定價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,點D在半徑OB的延長線上,∠BCD=∠A=30°.
(1)試判斷直線CD與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑長為1,求由弧BC、線段CD和BD所圍成的陰影部分面積.(結果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
(4)連接AC,H是拋物線上一動點,過點H作AC的平行線交x軸于點F.是否存在這樣的點F,使得以A,C,H,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點.將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.已知∠AOB=110°.
(1)求證:△COD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當α為多少度時,△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線EF交BC于點E,交AB于點F,D為線段CE的中點,BE=AC.
(1)求證:AD⊥BC.
(2)若∠BAC=75°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC中,AC=BC=10,AB=12.
(1)動手操作:利用尺規(guī)作以BC為直徑的⊙O,⊙O交AB于點D,⊙O交AC于點E,并且過點D作DF⊥AC交AC于點F.
(2)求證:直線DF是⊙O的切線;
(3)連接DE,記△ADE的面積為S1 , 四邊形DECB的面積為S2 , 求 的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com