【題目】你手中的一副三角板,它們的兩直角邊的比分別是______和______,斜邊與直角邊的比是______和______.
【答案】1:1 :3 :1 2:1或2:3.
【解析】
熟悉手中的三角板.分兩種情況(1)等腰直角三角形:它的兩條直角邊相等,即直角邊的比是1:1;若設(shè)它的直角邊是1,則根據(jù)勾股定理求得斜邊的值,即可得到斜邊與直角邊的比;(2)30°的直角三角形:根據(jù)30°所對(duì)的直角邊是斜邊的一半,若設(shè)短直角邊是1,則可求得斜邊,根據(jù)勾股定理得另一條直角邊.則可求得兩條直角邊的比、斜邊和直角邊的比.
解:(1)等腰直角三角形:它的兩條直角邊相等,即直角邊的比是1:1;若設(shè)它的直角邊是1,則根據(jù)勾股定理得斜邊是,即斜邊與直角邊的比是:1;
(2)30°的直角三角形:根據(jù)30°所對(duì)的直角邊是斜邊的一半,若設(shè)短直角邊是1,則斜邊是2,根據(jù)勾股定理得另一條直角邊是.則它的兩條直角邊的比是:3,斜邊和直角邊的比是2:1或2:3.
∴你手中的一副三角板,它們的兩直角邊的比分別是1:1和:3,斜邊與直角邊的比是:1和2:1或2:3.
故答案為:1:1 ;:3 ;:1 ;2:1或2:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎(jiǎng)活動(dòng),凡在開業(yè)當(dāng)天進(jìn)店購(gòu)物的顧客,都能獲得一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3的3個(gè)小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再?gòu)暮凶又须S機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,并計(jì)算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為6,則可獲得50元代金券一張;若所得的數(shù)字之和為5,則可獲得30元代金券一張;若所得的數(shù)字之和為4,則可獲得15元代金券一張;其它情況都不中獎(jiǎng).
(1)請(qǐng)用列表或樹狀圖的方法(選其中一種即可),把抽獎(jiǎng)一次可能出現(xiàn)的結(jié)果表示出來.
(2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎(jiǎng)活動(dòng),求能中獎(jiǎng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長(zhǎng)MF為0.5米,量得電線桿AB落在地上的影子BD長(zhǎng)3米,落在墻上的影子CD的高為2米.你能利用小明測(cè)量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(5,0),點(diǎn)C的坐標(biāo)為(0,4),四邊形ABCO為矩形,點(diǎn)P為線段BC上的一動(dòng)點(diǎn),若△POA為等腰三角形,且點(diǎn)P在雙曲線y=上,則k值可以是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O在邊AC上,⊙O與△ABC的邊AC,AB分別切于C、D兩點(diǎn),與邊AC交于點(diǎn)E,弦與AB平行,與DO的延長(zhǎng)線交于M點(diǎn).
(1)求證:點(diǎn)M是CF的中點(diǎn);
(2)若E是的中點(diǎn),連結(jié)DF,DC,試判斷△DCF的形狀;
(3)在(2)的條件下,若BC=a,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB∥CD,AD與BC相交于點(diǎn)K,E是線段AD上一動(dòng)點(diǎn),
(1)若BK=KC,求的值;
(2)聯(lián)結(jié)BE,若BE平分∠ABC,則當(dāng)AE=AD時(shí),猜想線段AB、BC、CD三者之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論并予以證明;
(3)試探究:當(dāng)BE平分∠ABC,且AE=AD(n>2)時(shí),線段AB、BC,CD三者之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】被譽(yù)為“中原第一高樓”的鄭州會(huì)展賓館(俗稱“玉米樓”)坐落在風(fēng)景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點(diǎn).學(xué)完了三角函數(shù)知識(shí)后,劉明和王華決定用自己學(xué)到的知識(shí)測(cè)量“玉米樓”的高度.如圖,劉明在點(diǎn)C處測(cè)得樓頂B的仰角為45°,王華在高臺(tái)上的D處測(cè)得樓頂?shù)难鼋菫?/span>40°.若高臺(tái)DE的高為5米,點(diǎn)D到點(diǎn)C的水平距離EC為47.4米,A,C,E三點(diǎn)共線,求“玉米樓”AB的高度.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直),(如圖)如果拋物線的最高點(diǎn)M離墻1米,離地面米,則水流下落點(diǎn)B離墻距離OB是( 。
A. 2米 B. 3米 C. 4米 D. 5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式.
(2)一動(dòng)點(diǎn)P在(1)中拋物線上滑動(dòng)且滿足S△ABP=10,求此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com