【題目】如圖,矩形紙片ABCD中,AB=3cm,現(xiàn)將紙片折疊壓平,使點(diǎn)A與點(diǎn)C重合,折痕為EF,如果sin∠BAE= ,那么重疊部分△AEF的面積為(
A.
B.
C.
D.

【答案】B
【解析】解:設(shè)AE=13x,則BE=5x,由折疊可知,EC=13x, 在Rt△ABE中,AB2+BE2=AE2 ,
即32+(5x)2=(13x)2
解得:x= ,
由折疊可知∠AEF=∠CEF,
∵AD∥BC,
∴∠CEF=∠AFE,
∴∠AEF=∠AFE,即AE=AF= ,
∴SAEF= ×AF×AB= × ×3= ;
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用翻折變換(折疊問題)和解直角三角形,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2= 的圖象交于A、B兩點(diǎn),已知當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2
(1)求一次函數(shù)的函數(shù)表達(dá)式;
(2)已知反比例函數(shù)在第一象限的圖象上有一點(diǎn)C到x軸的距離為2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)A在射線CE上,∠C=∠D

1)如圖1,若AC∥BD,求證:AD∥BC;

2)如圖2,若∠BAC=∠BAD,BD⊥BC,請?zhí)骄?/span>∠DAE∠C的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;

3)如圖3,在(2)的條件下,過點(diǎn)DDF∥BC交射線于點(diǎn)F,當(dāng)∠DFE=8∠DAE時(shí),求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年是第39個(gè)植樹節(jié),我們提出了“追求綠色時(shí)尚,走向綠色文明”的倡議.某校為積極響應(yīng)這一倡議,立即在八、九年級開展征文活動(dòng),校團(tuán)委對這兩個(gè)年級各班內(nèi)的投稿情況進(jìn)行統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中投稿3篇的班級個(gè)數(shù)所對應(yīng)的扇形的圓心角的度數(shù).
(2)求該校八、九年級各班在這一周內(nèi)投稿的平均篇數(shù),并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在投稿篇數(shù)最多的4個(gè)班中,八、九年級各有兩個(gè)班,校團(tuán)委準(zhǔn)備從這四個(gè)班中選出兩個(gè)班參加全校的表彰會(huì),請你用列表法或畫樹狀圖的方法求出所選兩個(gè)班正好不在同一年級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,以點(diǎn)A(1,0)為圓心,以2為半徑的圓與x軸交于B,C兩點(diǎn),與y軸交于D,E兩點(diǎn).

(1)直接寫出B,C,D點(diǎn)的坐標(biāo);
(2)若B、C、D三點(diǎn)在拋物線y=ax2+bx+c上,求出這個(gè)拋物線的解析式及它的頂點(diǎn)坐標(biāo).
(3)若圓A的切線交x軸正半軸于點(diǎn)M,交y軸負(fù)半軸于點(diǎn)N,切點(diǎn)為P,∠OMN=30°,試判斷直線MN是否經(jīng)過B、C、D三點(diǎn)所在拋物線的頂點(diǎn)?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:|m|=2,a,b互為相反數(shù),且都不為零,c,d互為倒數(shù).則2a+2b+(﹣3cd)﹣m的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+EOF=156°,則∠EOF的度數(shù)是( 。

A. 88° B. 30° C. 32° D. 48°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),ABCD,試求∠BPD與∠B、D的數(shù)量關(guān)系,說明理由.

(1)填空:

解:過點(diǎn)PEFAB,

∴∠B+BPE=180°

ABCD,EFAB

   (如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

EPD+   =180°

∴∠B+BPE+EPD+D=360°

∴∠B+BPD+D=360°

(2)依照上面的解題方法,觀察圖(2),已知ABCD,猜想圖中的∠BPD與∠B、D的數(shù)量關(guān)系,并說明理由.

(3)觀察圖(3)和(4),已知ABCD,直接寫出圖中的∠BPD與∠B、D的數(shù)量關(guān)系,不用說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

次數(shù)

1

2

3

4

5

6

7

8

9

10

黑棋數(shù)

2

5

1

5

4

7

4

3

3

6

根據(jù)以上數(shù)據(jù),解答下列問題:

(I)直接填空:第10次摸棋子摸到黑棋子的頻率為   ;

(Ⅱ)試估算袋中的白棋子數(shù)量.

查看答案和解析>>

同步練習(xí)冊答案