如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1,

其中正確的是( 。

 

A.

①②③

B.

①③④

C.

①③⑤

D.

②④⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


某家電銷售商城電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購進(jìn)電冰箱的數(shù)量與用64000元購進(jìn)空調(diào)的數(shù)量相等.

(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?

(2)現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種家電共100臺(tái),設(shè)購進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷售總利潤(rùn)為y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤(rùn)不低于13000元,請(qǐng)分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤(rùn);

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)電冰箱出廠價(jià)下調(diào)k(0<k<100)元,若商店保持這兩種家電的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)問中條件,設(shè)計(jì)出使這100臺(tái)家電銷售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論:

①二次三項(xiàng)式ax2+bx+c的最大值為4;

②4a+2b+c<0;

③一元二次方程ax2+bx+c=1的兩根之和為﹣1;

④使y≤3成立的x的取值范圍是x≥0.

其中正確的個(gè)數(shù)有(  )

 

A.

1個(gè)

B.

2個(gè)

C.

3個(gè)

D.

4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將直線在x軸下方的部分沿x軸翻折,得到一個(gè)新函數(shù)的圖象(圖中的“V形折線”).

(1)類比研究函數(shù)圖象的方法,請(qǐng)列舉新函數(shù)的兩條性質(zhì),并求新函數(shù)的解析式;

(2)如圖2,雙曲線y=與新函數(shù)的圖象交于點(diǎn)C(1,a),點(diǎn)D是線段AC上一動(dòng)點(diǎn)(不包括端點(diǎn)),過點(diǎn)D作x軸的平行線,與新函數(shù)圖象交于另一點(diǎn)E,與雙曲線交于點(diǎn)P.

①試求△PAD的面積的最大值;

②探索:在點(diǎn)D運(yùn)動(dòng)的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


不等式組的解集在數(shù)軸上表示正確的是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 先化簡(jiǎn),再求值:(+1),其中a=;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列關(guān)于的方程:①;②;③;

;⑤.其中一元二次方程有(    )

  A.1個(gè)               B.2個(gè)                C.3個(gè)                 D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若關(guān)于的一元二次方程的一個(gè)根為1,則方程的另一根為         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,菱形ABCD中,AB=2,∠A=120º,點(diǎn)P、Q、K分別為線段BC、CD、BD上任意一點(diǎn),則PKQK的最小值為………………………………………………(   )

A.1               B.             C.2             D.+1

 


查看答案和解析>>

同步練習(xí)冊(cè)答案