【題目】△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,AB=8,BC=15,CA=17,則下列結(jié)論不正確的是( )
A.△ABC是直角三角形,且AC為斜邊
B.△ABC是直角三角形,且∠ABC=90°
C.△ABC的面積是60
D.△ABC是直角三角形,且∠A=60°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a≠0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.
(1)求該拋物線的解析式;
(2)若點E為x軸下方拋物線上的一動點,當(dāng)S△ABE=S△ABC時,求點E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市為迎接省運會,要將某一城市美化工程招標(biāo),有甲、乙兩個工程隊投標(biāo),經(jīng)測算:甲隊單獨完成這項工程需要60天,若由甲隊先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點M的坐標(biāo)是(5,4),⊙M與y軸相切于點C,與x軸相交于A、B兩點.
(1)則點A、B、C的坐標(biāo)分別是A(__,__),B(__,__),C(__,__);
(2)設(shè)經(jīng)過A、B兩點的拋物線解析式為,它的頂點為F,求證:直線FA與⊙M相切;
(3)在拋物線的對稱軸上,是否存在點P,且點P在x軸的上方,使△PBC是等腰三角形.如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各題正確的是( )
A.由7x=4x﹣3移項得7x﹣4x=3
B.由 =1+ 去分母得2(2x﹣1)=1+3(x﹣3)
C.由2(2x﹣1)﹣3(x﹣3)=1去括號得4x﹣2﹣3x﹣9=1
D.由2(x+1)=x+7去括號、移項、合并同類項得x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(x>0)的圖象與直線y=x交于點M,∠AMB=90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點A,B,四邊形OAMB的面積為6.
(1)求k的值;
(2)點P在反比例函數(shù)(x>0)的圖象上,若點P的橫坐標(biāo)為3,∠EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點E,F(xiàn),問是否存在點E,使得PE=PF?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點O為原點,點A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點B在x軸的負半軸上,點C在第二象限.現(xiàn)將正方形OBCD繞點O順時針旋轉(zhuǎn)角α得到正方形OEFG.
(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達式;
(2)若α為銳角,tanα=,當(dāng)AE取得最小值時,求正方形OEFG的面積;
(3)當(dāng)正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為:1?若能,求點P的坐標(biāo);若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com