如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測(cè)得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測(cè)得條幅的底部B的仰角為45°,此時(shí)小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面內(nèi),E、C、N在同一條直線上,求條幅的長(zhǎng)度(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.73,≈1.41)


       解:過點(diǎn)D作DH⊥AN于H,過點(diǎn)E作FE⊥于DH于F,

∵坡面DE=20米,山坡的坡度i=1:,

∴EF=10米,DF=10米,

∵DH=DF+EC+CN=(10+30)米,∠ADH=30°,

∴AH=×DH=(30+30)米,

∴AN=AH+EF=(40+30)米,

∵∠BCN=45°,

∴CN=BN=20米,

∴AB=AN﹣BN=20+30≈71米,

答:條幅的長(zhǎng)度是71米.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,直線AB∥CD,一個(gè)含60°角的直角三角板EFG(∠E=60°)的直角頂點(diǎn)F在直線AB上,斜邊EG與AB相交于點(diǎn)H,CD與FG相交于點(diǎn)M.若∠AHG=50°,則∠FMD等于(  )

    A.                          10° B.                          20° C.                          30° D. 50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


為響應(yīng)國(guó)家節(jié)能減排的號(hào)召,鼓勵(lì)居民節(jié)約用電,各省先后出臺(tái)了居民用電“階梯價(jià)格”制度,如表中是某省的電價(jià)標(biāo)準(zhǔn)(每月).例如:方女士家5月份用電500度,電費(fèi)=180×0.6+220×二檔電價(jià)+100×三檔電價(jià)=352元;李先生家5月份用電460度,交費(fèi)316元,請(qǐng)問表中二檔電價(jià)、三檔電價(jià)各是多少?

階梯

電量

電價(jià)

一檔

0﹣180度

0.6元/度

二檔

181﹣400度

二檔電價(jià)

三檔

401度及以上

三檔電價(jià)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


據(jù)《2014年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)》顯示,2014年我國(guó)教育科技和文化體育事業(yè)發(fā)展較快,其中全年普通高中招生7966000人,將7966000用科學(xué)記數(shù)法表示為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,將一條長(zhǎng)度為1的線段三等分,然后取走其中的一份,稱為第一次操作;再將余下的每一條線段三等分,然后取走其中一份,稱為第二次操作;…如此重復(fù)操作,當(dāng)?shù)趎次操作結(jié)束時(shí),被取走的所有線段長(zhǎng)度之和為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


宇宙現(xiàn)在的年齡約為200億年,200億用科學(xué)記數(shù)法表示為( 。

   A.0.2×1011     B. 2×1010          C. 200×108         D. 2×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,從一塊直徑是8m的圓形鐵皮上剪出一個(gè)圓心角為90°的扇形,將剪下的扇形圍成一個(gè)圓錐,圓錐的高是(  )m.

   A.4         B. 5               C.             D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線段OB上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,過點(diǎn)E作直線l⊥x軸于H,過點(diǎn)C作CF⊥l于F.

(1)求拋物線解析式;

(2)如圖2,當(dāng)點(diǎn)F恰好在拋物線上時(shí),求線段OD的長(zhǎng);

(3)在(2)的條件下:

①連接DF,求tan∠FDE的值;

②試探究在直線l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


方程的解是         

查看答案和解析>>

同步練習(xí)冊(cè)答案