精英家教網 > 初中數學 > 題目詳情
有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30°.
(1)請直接寫出AF的長;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,求△AFK的面積(保留根號).

【答案】分析:(1)根據旋轉的性質可知△AFM≌△ADB,則AF=AD=BD•cos∠ADB=8×=4cm;
(2)當△AFK為等腰三角形時,由于AM<AF,那么A不能是等腰△AFK的頂點,則分兩種情況:①K為頂點,即AK=FK時;②F為頂點,即AF=FK.針對每一種情況,利用三角形的面積公式,可分別求出△AFK的面積.
解答:解:(1)AF=

(2)△AFK為等腰三角形時,分兩種情況:
①當AK=FK時,如圖.過點K作KN⊥AF于N,則KN⊥AF,AN=NF=AF=2cm.
在直角△NFK中,∠KNF=90°,∠F=30°,
∴KN=NF•tan∠F=2cm.
∴△AFK的面積=×AF×KN=
②當AF=FK時,如圖.過點K作KP⊥AF于P.
在直角△PFK中,∠KPF=90°,∠F=30°,
∴KP=KF=2cm.
∴△AFK的面積=×AF×KP=12cm2
點評:本題考查旋轉的性質,旋轉變化前后,對應線段、對應角分別相等,圖形的大小、形狀都不改變.注意(2)中需分情況討論△AFK為等腰三角形時的不同分類,不要漏解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.
(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數;
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30°.
(1)請直接寫出AF的長;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,求△AFK的面積(保留根號).
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得∠ADB=30°.

(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

有兩張完全重合的矩形紙片,小亮將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連結BD、MF,此時他測得BD=8cm,∠ADB=30°.

1.在圖1中,請你判斷直線FM和BD是否垂直?并證明你的結論;

2.小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數;

3.若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少.

 

 

查看答案和解析>>

科目:初中數學 來源:2011-2012學年北京門頭溝中考二模數學試卷(解析版) 題型:解答題

有兩張完全重合的矩形紙片,小亮將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連結BD、MF,此時他測得BD=8cm,∠ADB=30°.

1.在圖1中,請你判斷直線FM和BD是否垂直?并證明你的結論;

2.小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數;

3.若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少.

 

 

查看答案和解析>>

同步練習冊答案