分析 連結CC′,A′C交BC于O點,如圖,利用旋轉的性質得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,則可判斷△BCC′為等邊三角形,接著利用線段垂直平分線定理的逆定理說明A′C垂直平分B′C,則BO=$\frac{1}{2}$BC′=3,然后利用勾股定理計算出A′O,利用三角函數(shù)計算出OC,最后計算A′O+OC即可.
解答 解:連結CC′,A′C交BC于O點,如圖,
∵△ABC繞點B逆時針旋轉60°得到△A′BC′,
∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,
∴△BCC′為等邊三角形,
∴CB=CB′,
而A′B=A′C′,
∴A′C垂直平分B′C,
∴BO=$\frac{1}{2}$BC′=3,
在Rt△A′OB中,A′O=$\sqrt{A′{B}^{2}-O{B}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
在Rt△OBC中,∵tsin∠CBO=sin60°=$\frac{OC}{BC}$,
∴OC=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
∴A′C=A′O+OC=4+3$\sqrt{3}$.
故答案為4+3$\sqrt{3}$.
點評 本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.解決本題的關鍵是證明△BCC′為等邊三角形和A′C⊥BC′.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com