精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在正方形ABCD內作∠EAF=45°,AE交BC于點E,AF交CD于點F,連接EF,過點A作AH⊥EF,垂足為H,將△ADF繞點A順時針旋轉90°得到△ABG,若BE=2,DF=3,則AH的長為

【答案】6
【解析】解:由旋轉的性質可知:AF=AG,∠DAF=∠BAG.

∵四邊形ABCD為正方形,

∴∠BAD=90°.

又∵∠EAF=45°,

∴∠BAE+∠DAF=45°.

∴∠BAG+∠BAE=45°.

∴∠GAE=∠FAE.

在△GAE和△FAE中

∴△GAE≌△FAE.

∵AB⊥GE,AH⊥EF,

∴AB=AH,GE=EF=5.

設正方形的邊長為x,則EC=x﹣2,FC=x﹣3.

在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.

解得:x=6.

∴AB=6.

∴AH=6.

所以答案是:6.

【考點精析】本題主要考查了正方形的性質和旋轉的性質的相關知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點O是正六邊形ABCDEF的中心.

1)找出這個軸對稱圖形的對稱軸;

2)這個正六邊形繞點O旋轉多少度后能和原來的圖形重合?

3)如果換成其他的正多邊形呢?能得到一般的結論嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“2017年張學友演唱會”于6月3日在我市觀山湖奧體中心舉辦,小張去離家2520米的奧體中心看演唱會,到奧體中心后,發(fā)現演唱會門票忘帶了,此時離演唱會開始還有23分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車”原路趕回奧體中心,已知小張騎車的時間比跑步的時間少用了4分鐘,且騎車的平均速度是跑步的平均速度的1.5倍.
(1)求小張跑步的平均速度;
(2)如果小張在家取票和尋找“共享單車”共用了5分鐘,他能否在演唱會開始前趕到奧體中心?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形網格中建立如圖所示的平面直角坐標系xOy.△ABC的三個頂點都在格點上,點A的坐標是(4,4),請解答下列問題:

(1)將△ABC向下平移5個單位長度,畫出平移后的A1B1C1,并寫出點A的對應點A1的坐標;

(2)畫出△A1B1C1關于y軸對稱的△A2B2C2;

(3)將△ABC繞點C逆時針旋轉90°,畫出旋轉后的△A3B3C.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若一次函數圖像的交點在第一象限,則一次函數的圖像不經過( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】英國《?》雜志最近對30部手機進行了檢測,結果發(fā)現有近四分之一的手機攜帶的細菌數量達到可接受數量的10倍,其中一部最臟的手機一度讓它的主人出現嚴重消化不良.在手機上發(fā)現的有害細菌中,最為常見的有害細菌當屬金黃色葡萄球菌.這種細菌可導致一系列感染,金黃色葡萄球菌為球形,直徑左右,00000008米這個數用科學記數法表示為(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,AD⊥BC于點D,AE為∠BAC的平分線,且∠B=36°,∠C=66°.求∠DAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AM=CM,MP⊥AB于點P.求證:BP2=AP2+BC2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2﹣x+4與x軸交于點A,B,B點的坐標為(﹣4,0),與y軸交于點C.

(1)求拋物線的解析式和對稱軸.
(2)連接AC、BC,在x軸下方的拋物線上求一點M,使△ABM與△ABC的面積相等.
(3)在x軸下方作平行于x軸的直線l,與拋物線交于點D、E兩點(點D在對稱軸的左側).過點D、E分別作x軸的垂線,垂足分別為G、F,當矩形DEFG中DE=2DG時,求D點的坐標.

查看答案和解析>>

同步練習冊答案