【題目】如圖,點(diǎn)A(1,0)B(0,3)、C(2,4)、D(30),點(diǎn)Px軸上一點(diǎn),直線CP將四邊形ABCD的面積分成1:2的兩部分,則P點(diǎn)坐標(biāo)為______.

【答案】P(,0)(,0)

【解析】

CEx軸,根據(jù)四邊形ABCD的面積=SAOBS梯形OBCESCDE求得四邊形的面積,設(shè)點(diǎn)Px,0),則PD3x,由直線CP將四邊形ABCD的面積分成12兩部分知SCPD3.5SCPD7,據(jù)此列出方程求解可得.

過(guò)點(diǎn)CCEx軸于點(diǎn)E

AO1、OB3、OE2、CE4、DE1

∴四邊形ABCD的面積=SAOBS梯形OBCESCDE

×1×3×(34)×2×1×4

10.5,

設(shè)點(diǎn)Px0),

PD3x,

由直線CP將四邊形ABCD的面積分成12兩部分知SCPD3.5SCPD7,

×(3x)×43.5×(3x)×47,

解得:xx,

即點(diǎn)P的坐標(biāo)為(,0)或(0),

故答案為:(0)或(,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是小明家的住房結(jié)構(gòu)平面圖(單位:米),他打算把臥室以外的部分都鋪上地磚.

1)若鋪地磚的價(jià)格為80/平方米,那么鋪地磚需要花多少錢?(用代數(shù)式表示)

2)已知房屋的高為h米,現(xiàn)需要在客廳和臥室的墻壁上貼壁紙,那么需要多少平方米的壁紙(計(jì)算時(shí)不扣除門,窗所占的面積)?(用代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線,經(jīng)過(guò)點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限上的動(dòng)點(diǎn),過(guò)C作CAx軸,過(guò)D作DBy軸,垂足分別為A,B,連接AB,BC.

(1)求k的值;

(2)若BCD的面積為12,求直線CD的解析式;

(3)判斷AB與CD的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下4個(gè)圖中,不同的矩形ABCD,若把D點(diǎn)沿AE對(duì)折,使D點(diǎn)與BC上的F點(diǎn)重合;

1)圖中,若DEEC=21,求證:△ABF∽△AFE∽△FCE;并計(jì)算BFFC;

2)圖中若DEEC=31,計(jì)算BFFC= ;圖中若DEEC=41,計(jì)算BFFC= ;

3)圖中若DEEC=1,猜想BFFC= ;并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2-(2a+1)x+b的圖象經(jīng)過(guò)(2,-1)和(-2,7)且與直線y=kx-2k-3相交于點(diǎn)P(m,2m-7)

(1) 求拋物線的解析式

(2) 求直線y=kx-2k-3與拋物線y=ax2-(2a+1)x+b的對(duì)稱軸的交點(diǎn)Q的坐標(biāo)

(3) 在y軸上是否存在點(diǎn)T,使△PQT的一邊中線等于該邊的一半?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線BD=12cm,AC=16cm,AC,BD相交于點(diǎn)O,若E,F(xiàn)AC上兩動(dòng)點(diǎn),分別從A,C兩點(diǎn)以相同的速度向C、A運(yùn)動(dòng),其速度為0.5cm/s.

(1)當(dāng)EF不重合時(shí),四邊形DEBF是平行四邊形嗎?說(shuō)明理由;

(2)點(diǎn) E,F(xiàn)AC上運(yùn)動(dòng)過(guò)程中,以D、E、B、F為頂點(diǎn)的四邊形是否可能為矩形?如能,求出此時(shí)的運(yùn)動(dòng)時(shí)間t的值;如不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明、小華從學(xué)校出發(fā)到青少年宮參加書法比賽,小明步行一段時(shí)間后,小華騎自行車沿相同路線行進(jìn),兩人均勻速前行.他們的路程差s ()與小明出發(fā)時(shí)間t ()之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法:

①小華先到達(dá)青少年宮;②小華的速度是小明速度的2.5倍;③a=24;④b=480.其中正確的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完。設(shè)分配給甲店A型產(chǎn)品x件,兩商店銷售這兩種產(chǎn)品每件的利潤(rùn)(元)如下表:

A型利潤(rùn)

B型利潤(rùn)

甲店

200

170

乙店

160

150

1)分配給乙店B型產(chǎn)品 件(用含x的代數(shù)式表示)。

2)設(shè)這家公司賣出這100件產(chǎn)品的總利潤(rùn)為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍。

3)若公司要求總利潤(rùn)不低于17560元,有幾種不同分配方案?哪種方案總利潤(rùn)最大?請(qǐng)求出最大利潤(rùn)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在課題學(xué)習(xí)中,老師要求用長(zhǎng)為12厘米,寬為8厘米的長(zhǎng)方形紙片制作一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.三位同學(xué)分別以下列方式在長(zhǎng)方形紙片上截去兩角(圖中陰影部分),然后沿虛線折成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.

甲:如圖1,盒子底面的四邊形ABCD是正方形;

乙:如圖2,盒子底面的四邊形ABCD是正方形;

丙:如圖3,盒子底面的四邊形ABCD是長(zhǎng)方形,AB=2AD

將這三位同學(xué)所折成的無(wú)蓋長(zhǎng)方體的容積按從大到小的順序排列,正確的是

A.甲>乙>丙B.甲>丙>乙C.丙>甲>乙D.丙>乙>甲

查看答案和解析>>

同步練習(xí)冊(cè)答案