在平面直角坐標(biāo)系xOy中,已知點P(-4,3),在y軸上確定點M,使△MOP為等腰三角形,則符合條件的M點有________個.

4
分析:分類討論:①以O(shè)M為底時,點M的個數(shù);②以AM為底時,點M的個數(shù);③以PO為底邊時,點M的個數(shù).
解答:解:因為△MOP為等腰三角形,所以可分成三類討論:
①MO=PM(有一個)
此時只要以P為圓心PO長為半徑畫圓,可知圓與y軸交于O點和另一個點,另一個點就是M;
②PO=OM(有兩個)
此時只要以O(shè)為圓心PO長為半徑畫圓,可知圓與y軸交于兩個點,這兩個點就是M的兩種選擇(PO=OM=R)
③PM=OM(一個)
作PO的中垂線,與y軸有一個交點,該交點就是點M的最后一種選擇.(利用中垂線性質(zhì))
綜上所述,共有4個.
故填:4.
點評:本題考查了等腰三角形的判定及坐標(biāo)與圖形的性質(zhì);利用等腰三角形的判定來解決特殊的問題,其關(guān)鍵是根據(jù)題意,畫出符合實際條件的圖形,再利用數(shù)學(xué)知識來求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標(biāo);
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊答案