如圖所示,點B、E分別在AC、DF上,BD、CE均與AF相交,∠1=∠2,∠C=∠D,求證:∠A=∠F.

答案見試題解析.

解析試題分析:根據(jù)對頂角的性質(zhì)得到BD∥CE的條件,然后根據(jù)平行線的性質(zhì)得到∠B=∠C,已知∠C=∠D,則得到滿足AB∥EF的條件,再根據(jù)兩直線平行,內(nèi)錯角相等得到∠A=∠F.
解答:證明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠D=∠ABD,∴AB∥EF,∴∠A=∠F.
考點:1.平行線的判定與性質(zhì);2.對頂角、鄰補角.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

【問題提出】如果我們身邊沒有量角器和三角板,如何作15°大小的角呢?
【實踐操作】如圖.
第一步:對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開,得到AD∥EF∥BC.
第二步:再一次折疊紙片,使點A落在EF上的點N處,并使折痕經(jīng)過點B,得到折痕BM.折痕BM 與折痕EF相交于點P.連接線段BN,PA,得到PA=PB=PN.
【問題解決】
(1)求∠NBC的度數(shù);
(2)通過以上折紙操作,還得到了哪些不同角度的角?請你至少再寫出兩個(除∠NBC的度數(shù)以外).
(3)你能繼續(xù)折出15°大小的角了嗎?說說你是怎么做的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知∠ABC,點P在射線BA上,請根據(jù)“同位角相等,兩直線平行”,利用直尺和圓規(guī),過點P作直線PD平行于BC。(保留作圖痕跡,不寫作法。)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知點是線段的中點,點是線段的中點,點是線段的中點.

(1)若線段,求線段的長.
(2)若線段,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分線,OM是∠BOC的平分線.

(1)求∠MON的大小.
(2)當銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(6分)已知一個角的補角比這個角的余角的3倍大10°,求這個角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,AD//BC,,AC平分,求的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,一天晚上,小穎由路燈A下的B處走到C處時,測得影子CD的長為1米,當她繼續(xù)往前走到D處時,測得此時影子DE的長剛好是自己的身高,已知小穎的身高為1.5米,那么路燈A的高度AB為( 。

A.3米 B.4.5米 C.6米 D.8米 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線相交于點,平分,求∠2和∠3的度數(shù).

查看答案和解析>>

同步練習冊答案