【題目】保護(hù)視力要求人寫字時(shí)眼睛和筆端的距離應(yīng)超過30cm,圖1是一位同學(xué)的坐姿,把他的眼睛B,肘關(guān)節(jié)C和筆端A的位置關(guān)系抽象成圖2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的這種坐姿符合保護(hù)視力的要求嗎?請(qǐng)說明理由.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過點(diǎn)A(0,6)的拋物線y= x2+bx+c與x軸相交于B(﹣2,0)、C兩點(diǎn).
(1)求此拋物線的函數(shù)關(guān)系式和頂點(diǎn)D的坐標(biāo);
(2)求直線AC所對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)將(1)中求得的拋物線向左平移1個(gè)單位長(zhǎng)度,再向上平移m(m>0)個(gè)單位長(zhǎng)度得到新拋物線y1 , 若新拋物線y1的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(4)在(3)的結(jié)論下,新拋物線y1上是否存在點(diǎn)Q,使得△QAB是以AB為底邊的等腰三角形,請(qǐng)分析所有可能出現(xiàn)的情況,并直接寫出相對(duì)應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F,求證:△AEC≌△ADB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=70°∠B=50°,點(diǎn)D,E分別為AB,AC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若△EFC為直角三角形,則∠BDF的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝廠為了估計(jì)某校七年級(jí)學(xué)生穿每種尺碼校服的人數(shù),從該校七年級(jí)學(xué)生中隨機(jī)抽取了50名學(xué)生的身高數(shù)據(jù)(單位:cm),繪制成了下面的頻數(shù)分布表和頻數(shù)分布直方圖.
(1)表中m=________,n=________;
(2)身高x滿足160≤x<170的校服記為L(zhǎng)號(hào),則需要訂購(gòu)L號(hào)校服的學(xué)生占被調(diào)查學(xué)生的百分?jǐn)?shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知△ABC是等邊三角形,D、E、F分別是AB、AC、BC邊的中點(diǎn),M是直線BC上的任意一點(diǎn),在射線EF上截取EN,使EN=FM,連接DM、MN、DN.
(1)如圖①,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你按已知要求補(bǔ)全圖形,并判斷△DMN是怎樣的特殊三角形(不要求證明);
(2)請(qǐng)借助圖②解答:當(dāng)點(diǎn)M在線段BF上(與點(diǎn)B、F不重合),其它條件不變時(shí),(1)中的結(jié)論是否依然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
(3)請(qǐng)借助圖③解答:當(dāng)點(diǎn)M在射線FC上(與點(diǎn)F不重合),其它條件不變時(shí),(1)中的結(jié)論是否仍然成立?不要求證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線SN⊥直線WE,垂足是點(diǎn)O,射線ON表示正北方向,射線OE表示正東方向.已知射線OB的方向是南偏東m°,射線OC的方向是北偏東n°,且m°的角與n°的角互余.
(1)寫出圖中與∠BOE互余的角: .
(2)若射線OA是∠BON的角平分線,探索∠BOS與∠AOC的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com