【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1 , 再以正方形的對角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點A8的坐標是( )
A.(﹣8,0)
B.(0,8)
C.(0,8 )
D.(0,16)
【答案】D
【解析】解:根據(jù)題意和圖形可看出每經(jīng)過一次變化,都順時針旋轉(zhuǎn)45°,邊長都乘以 ,
∵從A到A3經(jīng)過了3次變化,
∵45°×3=135°,1×( )3=2 .
∴點A3所在的正方形的邊長為2 ,點A3位置在第四象限.
∴點A3的坐標是(2,﹣2);
可得出:A1點坐標為(1,1),
A2點坐標為(0,2),
A3點坐標為(2,﹣2),
A4點坐標為(0,﹣4),A5點坐標為(﹣4,﹣4),
A6(﹣8,0),A7(﹣8,8),A8(0,16),
故答案為:D.
:計算OA1 長可得為 ,OA2=2, OA3=2......,從而可得A1點坐標為(1,1),A2點坐標為(0,2),A3點坐標為(2,﹣2)A4點坐標為(0,﹣4),A5點坐標為(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),故而可得A8(0,16),
科目:初中數(shù)學 來源: 題型:
【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設和諧家園,準備將一塊周長為76米的長方形空地,設計成長和寬分別相等的9塊小長方形,如圖所示,計劃在空地上種上各種花卉,經(jīng)市場預測,綠化每平方米空地造價210元,請計算,要完成這塊綠化工程,預計花費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,折疊長方形紙片ABCD,使點D落在邊BC上的點F處,折痕為AE.已知AB=6cm,BC=10cm.則EC的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B在反比例函數(shù) 的圖象上,且點A、B的橫坐標分別為a、2a(a>0),AC⊥x軸,垂足為C,且△AOC的面積為2,
(1)求該反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 E,F 是ABCD 對角線上兩點,在條件①DE=BF;②∠ADE=∠CBF; ③AF=CE;④∠AEB=∠CFD 中,添加一個條件,使四邊形 DEBF 是平行四邊形,可添加 的條件是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,﹣1),B(﹣1,1),C(0,﹣2).
(1)寫出點B關于坐標原點O對稱的點B1的坐標;
(2)將△ABC繞點C順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過點B1的正比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用代數(shù)式表示:
(1)a,b兩數(shù)的平方和減去它們乘積的2倍;
(2)a,b兩數(shù)的和的平方減去它們的差的平方;
(3)一個兩位數(shù),個位上的數(shù)字為a,十位上的數(shù)字為b,請表示這個兩位數(shù);
(4)若a表示三位數(shù),現(xiàn)把2放在它的右邊,得到一個四位數(shù),請表示這個四位數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com