【題目】如圖,已知直線,直線和直線交于點(diǎn)C、D,直線上有一點(diǎn)P.
(1)如圖1,點(diǎn)P在C、D之間運(yùn)動(dòng)時(shí),∠PAC、∠APB、∠PBD之間有什么關(guān)系?并說(shuō)明理由。
(2)若點(diǎn)P在C、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與C、D不重合,如圖2、3),試直接寫(xiě)出∠PAC、∠APB、∠PBD之間有什么關(guān)系,不必寫(xiě)理由。
圖1 圖2 圖3
【答案】(1)詳見(jiàn)解析;(2)當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l1上方時(shí),∠PBD=∠PAC+∠APB;當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l2下方時(shí),∠PAC=∠PBD+∠APB.
【解析】
(1)過(guò)點(diǎn)P作PE∥l1,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等即可得證;
(2)同理(1)即可得證.
(1)如圖,當(dāng)P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),∠APB=∠PAC+∠PBD;
理由如下:
過(guò)點(diǎn)P作PE∥l1,
∵l1∥l2,
∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;
(2)如圖2,當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l1上方時(shí),∠PBD=∠PAC+∠APB;
理由如下:
∵l1∥l2,
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB;
如圖3,當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l2下方時(shí),∠PAC=∠PBD+∠APB;
理由如下:
∵l1∥l2,
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的函數(shù)y=ax2+(a+2)x+a+1的圖象與x軸只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一個(gè)棱長(zhǎng)為的正方體的每個(gè)面等分成個(gè)小正方形,然后沿每個(gè)面正中心的一個(gè)正方形向里挖空(相當(dāng)于挖去個(gè)小正方體),所得到的幾何體的表面積是( )
A. 78 B. 72 C. 54 D. 48
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠3=∠B,∠4=65°,求證∠ACB=∠4.請(qǐng)?zhí)羁胀?/span>
成證明過(guò)程:
∵∠1+∠2=180°( )∠1+∠______=180°
∴∠2=∠DFE( )
∴AB∥EF( )
∴∠3=∠ADE( )
又∵∠3=∠B
∴∠ADE=∠_______
∴DE∥BC( )
∴∠ACB=∠4( )
∴∠ACB=65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M(-3,m)是函數(shù)y=x+1與反比例函數(shù)(k≠0)的圖象的一個(gè)交點(diǎn).
(1)求反比例函數(shù)表達(dá)式;
(2)點(diǎn)P是x軸正半軸上的一個(gè)動(dòng)點(diǎn),設(shè)OP=a(a≠2),過(guò)點(diǎn)P作垂直于x軸的直線,分別交一次函數(shù),反比例函數(shù)的圖象于點(diǎn)A,B,過(guò)OP的中點(diǎn)Q作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)C,△ABC′與△ABC關(guān)于直線AB對(duì)稱(chēng).
①當(dāng)a=4時(shí),求△ABC′的面積;
②若△AMC與△AMC′的面積相等,求a的值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB'C'D'的位置,旋轉(zhuǎn)角為(0°<<90°).若∠1=112°,則∠的大小是( )
A. 22° B. 20° C. 28° D. 68°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b)且a、b滿(mǎn)足,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O-C-B-A-O的線路移動(dòng).
(1)點(diǎn)B的坐標(biāo)為_______;當(dāng)點(diǎn)P移動(dòng)3.5秒時(shí),點(diǎn)P的坐標(biāo)為__________;
(2)在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸的距離為4個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更好宣傳“開(kāi)車(chē)不喝酒,喝酒不開(kāi)車(chē)”的駕車(chē)?yán)砟,某市一家?bào)社設(shè)計(jì)了如圖1的調(diào)查問(wèn)卷(單選),在隨機(jī)調(diào)查了本市10000名司機(jī)中的部分司機(jī)后,統(tǒng)計(jì)整理并制作了如圖2所示的統(tǒng)計(jì)圖:
根據(jù)以上的信息解答下列問(wèn)題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中a= .
(2)該市支持選項(xiàng)C的司機(jī)大約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com