【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結論:①AD=BC;②BD、AC互相平分;③四邊形ACED是菱形.其中正確的個數(shù)是
A. 0 B. 1 C. 2 D. 3
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩條直線AB、CD相交于點O,且,射線OM從OB開始繞O點逆時針方向旋轉(zhuǎn),速度為,射線ON同時從OD開始繞O點順時針方向旋轉(zhuǎn),速度為兩條射線OM、ON同時運動,運動時間為t秒本題出現(xiàn)的角均小于平角
當時,的度數(shù)為多少,的度數(shù)為多少;的度數(shù)為多少;
當時,若,試求出t的值;
當時,探究的值,問:t滿足怎樣的條件是定值;滿足怎樣的條件不是定值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學初三(1)班共有40名同學,在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:
跳繩數(shù)/個 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 數(shù) | 1 | 2 | 8 | 11 | 5 |
將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;
(2)這個班同學這次跳繩成績的眾數(shù)是個,中位數(shù)是個;
(3)若跳滿90個可得滿分,學校初三年級共有720人,試估計該中學初三年級還有多少人跳繩不能得滿分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側作直線AP,點C關于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.
(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結CE,寫出AE, BE, CE之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:
如圖,在平面直角坐標系中有三點A(x1,y1),B(x2,y2),C(x3,y3),小明在學習中發(fā)現(xiàn),當x1=x2,AB∥y軸,線段AB的長度為|y1﹣y2|;當y1=y3,AC∥x軸,線段AC的長度為|x1﹣x3|.
初步應用
(1)若點A(﹣1,1)、B(2,1),則AB∥ 軸(填“x”或“y”);
(2)若點C(1,﹣2),CD∥y軸,且點D在x軸上,則CD= ;
(3)若點E(﹣3,2),點F(t,﹣4),且EF∥y軸,t= ;
拓展探索:
已知P(3,﹣3),PQ∥y軸.
(1)若三角形OPQ的面積為3,求滿足條件的點Q的坐標.
(2)若PQ=a,將點Q向右平移b個單位長度到達點M,已知點M在第一象限角平分線上,請直接寫出a,b之間滿足的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點E是AC的中點,AC=2AB,∠BAC的平分線AD交BC于點D,作AF∥BC,連接DE并延長交AF于點F,連接FC.
求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點為坐標原點,點分別在軸正半軸和軸正半軸上,且,點從原點出發(fā)以每秒個單位長度的速度沿x軸正半軸方向運動.
(1)求點的坐標.
(2)連接設三角形的面積為,點的運動時間為,請用含的式子表示并直接寫出的取值范圍.
(3)當點在上運動時,將線段沿軸正方向平移,使點與點重合,點的對應點為點,連接,將線段沿軸正方向平移,使點與點重合,點的對應點為點,取的中點是否存在的值,使三角形的面積等于三角形的面積?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小明同學化簡代數(shù)式a+2+ 的過程,請仔細閱讀并解答所提出的問題. a+2+ =2+a+ …第一步
=(2+a)(2﹣a)+a2…第二步
=2﹣a2+a2…第三步
=2…第四步
(1)小明的解法從第步開始出現(xiàn)錯誤,正確的化簡結果是;
(2)原代數(shù)式的值能等于2嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com