【題目】如圖,用大小相同的小正方體從左至右擺放成幾何體,若小正方體的棱長為1cm,則第①個幾何體的表面積為6cm2,第②個幾何體的表面積為18cm2,第③個幾何體的表面積為36cm2,第④個幾何體的表面積為60cm2,…,按照這樣的規(guī)律,第n個幾何體的表面積為________cm2

【答案】3nn+1

【解析】

根據(jù)已知圖形的面積得出變化規(guī)律,進而求出答案.

解:∵第①個幾何體的表面積為:6=3×1×1+1),

第②個幾何體的表面積為18=3×2×2+1),
第③個幾何體的表面積為36=3×3×3+1),

第④個幾何體的表面積為60=3×44+1),
∴按照這樣的規(guī)律,第n個幾何體的表面積為:3nn+1).
故答案為:3nn+1).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結(jié)論正確的是(  )

A. 的收入去年和前年相同

B. 的收入所占比例前年的比去年的大

C. 去年的收入為2.8萬

D. 前年年收入不止①②③三種農(nóng)作物的收入

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了完成舌尖上的中國的錄制,節(jié)目組隨機抽查了某省“A.奶制品類,B.肉制品類,C.面制品類,D.豆制品類四類特色美食若干種,將收集的數(shù)據(jù)整理并繪制成下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中信息完成下列問題:

(1)這次抽查了四類特色美食共 種,扇形統(tǒng)計圖中a=  ,扇形統(tǒng)計圖中A部分圓心角的度數(shù)為  ;

(2)補全條形統(tǒng)計圖;

(3)如果全省共有這四類特色美食120種,請你估計約有多少種屬于豆制品類”?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD由四個相同的大長方形,四個相同的小長形以及一個小正方形組成,其中四個大長方形的長和寬分別是小長方形長和寬的2倍,若中間小正方形的面積為1,則大正方形ABCD的面積是(

A.36B.25C.20D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算 27a8 a3 9a 2 的順序不正確的是(

A.(27 9)a83 2B.(27a8 a3 ) 9a 2

C.27a8 (a3 9a 2 )D.(27a8 9a 2 ) a3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交ABM,交ACN

1)若∠ABC=70°,則∠MNA的度數(shù)是__

2)連接NB,若AB=8cm,NBC的周長是14cm

BC的長;

在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長值最。咳舸嬖,標出點P的位置并求△PBC的周長最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠BAE+∠AED180°,∠1=∠2,那么∠F=∠G嗎?為什么?

解:因為∠BAE+∠AED180°( 已知)

所以ABCD________

所以∠BAE=∠AEC________

因為∠1=∠2( 已知)

所以∠BAE—1=∠AEC—2(等式性質(zhì))

即∠3=∠4

所以AFEG________,

所以∠F=∠G________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,的垂直平分線上一點,軸上一點且.

1)若,求點的坐標;

2)在(1)的條件下,求證:;

3)如圖2,已知,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在△ABC中,∠A90°,PBC邊上的一點,P1P2是點P關(guān)于AB、AC的對稱點,連結(jié)P1P2,分別交AB、AC于點D、E

1)若∠A52°,求∠DPE的度數(shù);

2)如圖2,在△ABC中,若∠BAC90°,用三角板作出點P關(guān)于AB、AC的對稱點P1P2,(不寫作法,保留作圖痕跡),試判斷點P1P2與點A是否在同一直線上,并說明理由.

查看答案和解析>>

同步練習冊答案