【題目】關(guān)于二次函數(shù)y2x2mx+m2,以下結(jié)論:①不論m取何值,拋物線總經(jīng)過點(diǎn)(1,0);②拋物線與x軸一定有兩個(gè)交點(diǎn);③若m6,拋物線交x軸于A、B兩點(diǎn),則AB1;④拋物線的頂點(diǎn)在y=﹣2x12圖象上.上述說法錯(cuò)誤的序號(hào)是_____________

【答案】

【解析】

由二次函數(shù)y2x2mx+m2=(x-1)(2x-m+2),即可判斷①,根據(jù)根的判別式,即可判斷②,令y=0,代入y=(x-1)(2x-m+2),得: (x-1)(2x-m+2)=0, 解得:,即可判斷③,由二次函數(shù)y2x2mx+m2,得:頂點(diǎn)坐標(biāo)為:,即可判斷④.

∵二次函數(shù)y2x2mx+m2=(x-1)(2x-m+2),

∴不論m取何值,拋物線總經(jīng)過點(diǎn)(1,0),

故①正確;

∵當(dāng)m=4時(shí),y=2x2﹣4x+2,此時(shí),

∴拋物線與x軸有一個(gè)交點(diǎn);

故②錯(cuò)誤;

y=0,代入y=(x-1)(2x-m+2),得: (x-1)(2x-m+2)=0,

解得:

AB== ,

∴若m6,則AB1,

故③正確;

∵二次函數(shù)y2x2mx+m2,

∴頂點(diǎn)坐標(biāo)為:,

∴拋物線的頂點(diǎn)在y=﹣2x12圖象上,

故④正確;

故答案是:②

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出關(guān)于軸對(duì)稱的,并寫出各頂點(diǎn)的坐標(biāo);

(2)將向右平移6個(gè)單位,作出平移后的,并寫出各頂點(diǎn)的坐標(biāo);

(3)觀察,它們是否關(guān)于某直線對(duì)稱?若是,請(qǐng)用粗線條畫出對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰直角三角形OAB放置于平面直角坐標(biāo)系中,OA=AB=10,A=90°,DAB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A,B重合),作∠ACD=60°,交OA于點(diǎn)C,若點(diǎn)C,D都在雙曲線y=(k>0,x>0)上,則k的值為( 。

A. B. C. D. 25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)關(guān)于拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為,點(diǎn),分別在軸和軸上,則四邊形周長的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的平分線,的外角的平分線,如果,,則

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017浙江省湖州市)如圖,已知∠AOB=30°,在射線OA上取點(diǎn)O1,以O1為圓心的圓與OB相切;在射線O1A上取點(diǎn)O2,以O2為圓心,O2O1為半徑的圓與OB相切;在射線O2A上取點(diǎn)O3,以O3為圓心,O3O2為半徑的圓與OB相切;;在射線O9A上取點(diǎn)O10,以O10為圓心,O10O9為半徑的圓與OB相切.若⊙O1的半徑為1,則⊙O10的半徑長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑DE=12 cm,在△ABC,ACB=90°,ABC=30°,BC=12 cm.半圓O2 cm/s的速度自左向右運(yùn)動(dòng),在運(yùn)動(dòng)過程中,點(diǎn)D,E始終在直線BC上.設(shè)運(yùn)動(dòng)時(shí)間為t s,當(dāng)t=0時(shí),半圓O在△ABC的左側(cè),OC=8 cm.

(1)當(dāng)t=________s時(shí),半圓OAC所在直線第一次相切;點(diǎn)C到直線AB的距離為________.

(2)當(dāng)t為何值時(shí),直線AB與半圓O所在的圓相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC是等腰三角形,AB=AC,點(diǎn)D,E,F分別在AB,BC,AC邊上,且BD=CE,BE=CF

1)求證:DEF是等腰三角形;

2)猜想:當(dāng)∠A滿足什么條件時(shí),DEF是等邊三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以正方形的頂點(diǎn)為圓心的弧恰好與對(duì)角線相切,以頂點(diǎn)為圓心,正方形的邊長為半徑的弧,已知正方形的邊長為,則圖中陰影部分的面積為(

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案