【題目】如圖,數(shù)軸上A、B、C三點表示的數(shù)分別為、、,且、滿足.
(1)則= , = ;
(2)動點P從A點出發(fā),以每秒10個單位的速度沿數(shù)軸向右運動,到達(dá)B點停留片刻后立即以每秒6個單位的速度沿數(shù)軸返回到A點,共用了6秒;其中從C到B,返回時從B到C(包括在B點停留的時間)共用了2秒.
①求C點表示的數(shù);
②設(shè)運動時間為秒,求為何值時,點P到A、B、C三點的距離之和為23個單位?
【答案】(1)a=-8,b=12;(2)7;(3)1.2;1.8;3;4.
【解析】試題分析:(1)根據(jù)偶次方以及絕對值的非負(fù)性即可求出a、b的值;
(2)設(shè)AC=x,根據(jù)在AC上往返運動用時為6-2=4秒列方程求解即可;
(3)分4種情況進行分類討論即可得解.
試題解析:(1)∵
∴a+8=0,b-12=0,
解得:a=-8,b=12;
(2)設(shè)AC=x,根據(jù)題意得:
,
解得x=15,
c=—8+15=7;
(3)①當(dāng)P從A到B在AC上運動時,設(shè)t秒時,點P到A、B、C三點的距離之和為23個單位,根據(jù)題意得:
-8+10t+7-10+12-10t=23
解得:t=1.2
②當(dāng)P從A到B在CB上運動時,設(shè)t秒時,點P到A、B、C三點的距離之和為23個單位,根據(jù)題意得:
10t+10t-7+12-10t=23
解得:t=1.8
同理可得:t=3或t=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 (a為常數(shù),且a>0)與x軸從左至右依次交于A,B兩點,與y軸交于點C,經(jīng)過點B的直線與拋物線的另一交點為D,且點D的橫坐標(biāo)為﹣5.
(1)求拋物線的函數(shù)表達(dá)式;
(2)P為直線BD下方的拋物線上的一點,連接PD、PB, 求△PBD面積的最大值.
(3)設(shè)F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當(dāng)點F的坐標(biāo)是多少時,點M在整個運動過程中用時最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,參加今年揚州市初中畢業(yè)、升學(xué)統(tǒng)一考試的學(xué)生約36800人,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是正方形,M是AB延長線上一點.直角三角尺的一條直角邊經(jīng)過點D,且直角頂點E在AB邊上滑動(點E不與點A、B重合),另一直角邊與∠CBM的平分線BF相交于點F.
(1)如圖1,當(dāng)點E在AB邊得中點位置時:
①通過測量DE、EF的長度,猜想DE與EF滿足的數(shù)量關(guān)系是 .
②連接點E與AD邊的中點N,猜想NE與BF滿足的數(shù)量關(guān)系是 ,請證明你的猜想.
(2)如圖2,當(dāng)點E在AB邊上的任意位置時,猜想此時DE與EF有怎樣的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=﹣3x的圖象沿y軸向上平移2個單位長度后,所得圖象對應(yīng)的函數(shù)關(guān)系式為( )
A.y=﹣3x+2
B.y=﹣3x﹣2
C.y=﹣3(x+2)
D.y=﹣3(x﹣2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com