【題目】準(zhǔn)備一張矩形紙片,按如圖操作:

將△ABE沿BE翻折,使點(diǎn)A落在對(duì)角線BD上的M點(diǎn),將△CDF沿DF翻折,使點(diǎn)C落在對(duì)角線BD上的N點(diǎn).

1)求證:四邊形BFDE是平行四邊形;

2)若四邊形BFDE是菱形,BE2,求菱形BFDE的面積.

【答案】1)證明見解析;(2 .

【解析】

1)根據(jù)矩形的性質(zhì)和翻折變換的性質(zhì)得到∠EBD=FDB,證明EBDF,根據(jù)平行四邊形的判定定理證明結(jié)論;
2)根據(jù)菱形的性質(zhì)和翻折變換的性質(zhì)求出∠ABE=30°,根據(jù)直角三角形的性質(zhì)求出AB=,根據(jù)菱形的面積公式計(jì)算即可.

1)證明:四邊形ABCD是矩形,

∴∠AC90°,ABCD,ABCD

∴∠ABDCDB,

由翻折變換的性質(zhì)可知,ABEEBD,CDFFDB

∴∠EBDFDB,

EBDF,

EDBF,

四邊形BFDE為平行四邊形;

2)解:四邊形BFDE為菱形,

∴∠EBDFBD

∵∠EBDABE,

∴∠EBDFBDABE

四邊形ABCD是矩形,

ABC90°,

∴∠EBDFBDABE30°,

AB,

菱形BFDE的面積SDE×AB2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的切線,OA,OCO的半徑,且OCAB,連接BCO于點(diǎn)D,點(diǎn)D恰為BC的中點(diǎn),連接OD并延長,交AB于點(diǎn)E

1)求∠B的度數(shù);

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊AB的解析式為yax+2,頂點(diǎn)C,D在雙曲線yk0)上.若AB2AD,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,某地的計(jì)價(jià)規(guī)則如表:

小李與小張分別從不同地點(diǎn),各自同時(shí)乘坐滴滴快車,到同一地點(diǎn)相見,已知到達(dá)約定地點(diǎn)時(shí)他們的實(shí)際行車?yán)锍谭謩e為7公里與9公里,兩人付給滴滴快車的乘車費(fèi)相同.其中一人先到達(dá)約定地點(diǎn),他等候另一人的時(shí)間等于他自己實(shí)際乘車時(shí)間,且恰好是另一人實(shí)際乘車時(shí)間的一半,則小李的乘車費(fèi)為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB相交,連接CO,過點(diǎn)D作⊙O的切線,與AB的延長線交于點(diǎn)E,若DEAC,∠BAC40°,則∠OCD的度數(shù)為(

A.65°B.30°C.25°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某便利店的咖啡單價(jià)為10/杯,為了吸引顧客,該店共推出了三種會(huì)員卡,如下表:

會(huì)員卡類型

辦卡費(fèi)用/

有效期

優(yōu)惠方式

A

40

1

每杯打九折

B

80

1

每杯打八折

C

130

1

一次性購買2杯,第二杯半價(jià)

例如,購買A類會(huì)員卡,1年內(nèi)購買50次咖啡,每次購買2杯,則消費(fèi)元.若小玲1年內(nèi)在該便利店購買咖啡的次數(shù)介于75~85次之間,且每次購買2杯,則最省錢的方式為(

A.購買A類會(huì)員卡B.購買B類會(huì)員卡

C.購買C類會(huì)員卡D.不購買會(huì)員卡

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y軸交于點(diǎn)

1)求c的值;

2)當(dāng)時(shí),求拋物線頂點(diǎn)的坐標(biāo);

3)已知點(diǎn),若拋物線與線段有兩個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BPDQ

(1)、如圖a,求證:△BCP≌△DCQ;

(2)、如圖,延長BP交直線DQ于點(diǎn)E

如圖b,求證:BE⊥DQ;

如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師將自己201910月至20205月的通話時(shí)長(單位:分鐘)的有關(guān)數(shù)據(jù)整理如下:

201910月至20203月通話時(shí)長統(tǒng)計(jì)表

時(shí)間

10

11

12

1

2

3

時(shí)長(單位:分鐘)

520

530

550

610

650

660

20204月與20205月,這兩個(gè)月通話時(shí)長的總和為1100分鐘根據(jù)以上信息,推斷張老師這八個(gè)月的通話時(shí)長的中位數(shù)可能的最大值為( )

A.550B.580C.610D.630

查看答案和解析>>

同步練習(xí)冊(cè)答案