(2011•朝陽)如圖,沿Rt△ABC的中位線DE剪切一刀后,用得到的△ADE和四邊形DBCE拼圖,下列圖形:①平行四邊形;②菱形;③矩形;④等腰梯形.一定能拼出的是( 。
分析:可動手拼圖,先畫出圖形再根據(jù)平行四邊形和菱形、矩形、等腰梯形的性質分別判定即可.
解答:解:
如圖:①為矩形;②為平行四邊形,若∠B=60°時為菱形;③等腰梯形.
故一定能拼出的是:①③④.
故選C.
點評:此題主要考查了直角三角形的中位線定理,以及平行四邊形和菱形、矩形、等腰梯形的性質,熟練掌握四邊形的性質是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•朝陽)如圖,已知∠1=∠2=∠3=65°,則∠4的度數(shù)為
115°
115°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•朝陽)如圖,在方格紙上建立的平面直角坐標系中,Rt△ABC關于y軸對稱的圖形為Rt△DEF,則點A的對應點D的坐標是
(2,1)
(2,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•朝陽)如圖,身高是1.6m的某同學直立于旗桿影子的頂端處,測得同一時刻該項同學和旗桿的影子長分別為1.2m和9m,則旗桿的高度為
12
12
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•朝陽)如圖(1),在△ABC中,∠ACB=90°,AC=BC=
2
,點D在AC上,點E在BC上,且CD=CE,連接DE.
(1)線段BE與AD的數(shù)量關系是
BE=AD
BE=AD
,位置關系是
BE⊥AD
BE⊥AD

(2)如圖(2),當△CDE繞點C順時針旋轉一定角度α后,(1)中的結論是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.
(3)繞點C繼續(xù)順時針旋轉△CDE,當90°<α<180°時,延長DC交AB于點F,請在圖(3)中補全圖形,并求出當AF=1+
3
3
時,旋轉角α的度數(shù).

查看答案和解析>>

同步練習冊答案