【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O為AC中點,若點D在直線BC上運動,連接OE,則在點D運動過程中,線段OE的最小值是為( )
A.
B.
C.1
D.
【答案】B
【解析】設Q是AB的中點,連接DQ,
∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
∵AB=AC=2,O為AC中點,
∴AQ=AO,
在△AQD和△AOE中,
,
∴△AQD≌△AOE(SAS),
∴QD=OE,
∵點D在直線BC上運動,
∴當QD⊥BC時,QD最小,
∵△ABC是等腰直角三角形,
∴∠B=45°,
∵QD⊥BC,
∴△QBD是等腰直角三角形,
∴QD= QB,
∵QB= AB=1,
∴QD= ,
∴線段OE的最小值是為 .
所以答案是:B.
【考點精析】本題主要考查了垂線段最短和等腰三角形的性質的相關知識點,需要掌握連接直線外一點與直線上各點的所有線段中,垂線段最短;現實生活中開溝引水,牽牛喝水都是“垂線段最短”性質的應用;等腰三角形的兩個底角相等(簡稱:等邊對等角)才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,點P、Q分別是AB、AC上的一動點,且滿足BP=AQ,D是BC的中點.
(1)求證:△PDQ是等腰直角三角形;
(2)當點P運動到什么位置時,四邊形APDQ是正方形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1) 求證:CF=AD;
(2) 若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某草莓種植農戶喜獲豐收,共收獲草莓2000kg.經市場調查,可采用批發(fā)、零售兩種銷售方式,這兩種銷售方式每kg草莓的利潤如下表:
銷售方式 | 批發(fā) | 零售 |
利潤(元/kg) | 6 | 12 |
設按計劃全部售出后的總利潤為y元,其中批發(fā)量為xkg.
(1)求y與x之間的函數關系式;
(2)若零售量不超過批發(fā)量的4倍,求該農戶按計劃全部售完后獲得的最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com