【題目】如圖,是正方形的邊的中點(diǎn),點(diǎn)關(guān)于對(duì)稱,的延長(zhǎng)線與交于點(diǎn),與的延長(zhǎng)線交于點(diǎn),點(diǎn)的延長(zhǎng)線上,作正方形,連接,記正方形的面積分別為,,則下列結(jié)論錯(cuò)誤的是( 。

A. B. C. D.

【答案】D

【解析】

根據(jù)勾股定理可判斷A;連接,作,易證得是等腰直角三角形,設(shè),則,

利用三角形相似的性質(zhì)以及勾股定理得到,,,,,即可證得,可判斷B;根據(jù)平行線分線段成比例定理可判斷C;求得可判斷D.

解:∵正方形的面積分別為,

,

中,,

,故A結(jié)論正確;

連接

∵點(diǎn)關(guān)于對(duì)稱,

,

中,

,,,

,

,,

,即,

,

是等腰直角三角形,

,

,,

,

,

,

設(shè),則,

,,

,

,

,

,

,

中,,

,故B結(jié)論正確;

,

,

,

,故C結(jié)論正確;

,,

,

,

,

,

,

,

,即,

,

,

,故結(jié)論D錯(cuò)誤,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】立定跳遠(yuǎn)是嘉興市體育中考的抽考項(xiàng)目之一,某校九年級(jí)(1),(2)班準(zhǔn)備集體購(gòu)買某品牌的立定跳遠(yuǎn)訓(xùn)練鞋.現(xiàn)了解到某網(wǎng)店正好有這種品牌訓(xùn)練鞋的促銷活動(dòng),其購(gòu)買的單價(jià)y(元/雙)與一次性購(gòu)買的數(shù)量x(雙)之間滿足的函數(shù)關(guān)系如圖所示.

1)當(dāng)10≤x60時(shí),求y關(guān)于x的函數(shù)表達(dá)式;

2)九(1),(2)班共購(gòu)買此品牌鞋子100雙,由于某種原因需分兩次購(gòu)買,且一次購(gòu)買數(shù)量多于25雙且少于60雙;

①若兩次購(gòu)買鞋子共花費(fèi)9200元,求第一次的購(gòu)買數(shù)量;

②如何規(guī)劃兩次購(gòu)買的方案,使所花費(fèi)用最少,最少多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(材料閱讀):地球是一個(gè)球體,任意兩條相對(duì)的子午線都組成一個(gè)經(jīng)線圈(如圖中的).人們?cè)诒卑肭蚩捎^測(cè)到北極星,我國(guó)古人在觀測(cè)北極星的過程中發(fā)明了如圖所示的工具尺(古人稱它為“復(fù)矩”),尺的兩邊互相垂直,角頂系有一段棉線,棉線末端系一個(gè)銅錘,這樣棉線就與地平線垂直.站在不同的觀測(cè)點(diǎn),當(dāng)工具尺的長(zhǎng)邊指向北極星時(shí),短邊與棉線的夾角的大小是變化的.

(實(shí)際應(yīng)用):觀測(cè)點(diǎn)在圖1所示的上,現(xiàn)在利用這個(gè)工具尺在點(diǎn)處測(cè)得,在點(diǎn)所在子午線往北的另一個(gè)觀測(cè)點(diǎn),用同樣的工具尺測(cè)得的直徑,

1)求的度數(shù);

2)已知km,求這兩個(gè)觀測(cè)點(diǎn)之間的距離即的長(zhǎng).(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電子政務(wù)、數(shù)字經(jīng)濟(jì)、智慧社會(huì)一場(chǎng)數(shù)字革命正在神州大地激蕩.在第二屆數(shù)字中國(guó)建設(shè)峰會(huì)召開之際,某校舉行了第二屆掌握新技術(shù),走進(jìn)數(shù)時(shí)代信息技術(shù)應(yīng)用大賽,將該校八年級(jí)參加競(jìng)賽的學(xué)生成績(jī)統(tǒng)計(jì)后,繪制成如下統(tǒng)計(jì)圖表(不完整):

掌握新技術(shù),走進(jìn)數(shù)時(shí)代信息技術(shù)應(yīng)用大賽成績(jī)頻數(shù)分布統(tǒng)計(jì)表

組別

成績(jī)x(分)

人數(shù)

A

60≤x70

10

B

70≤x80

m

C

80≤x90

16

D

90≤x≤100

4

請(qǐng)觀察上面的圖表,解答下列問題:

1)統(tǒng)計(jì)表中m   ;統(tǒng)計(jì)圖中n   ,D組的圓心角是   度.

2D組的4名學(xué)生中,有2名男生和2名女生.從D組隨機(jī)抽取2名學(xué)生參加5G體驗(yàn)活動(dòng),請(qǐng)你畫出樹狀圖或用列表法求:

①恰好1名男生和1名女生被抽取參加5G體驗(yàn)活動(dòng)的概率;

②至少1名女生被抽取參加5G體驗(yàn)活動(dòng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:是等腰直角三角形,,將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到,記旋轉(zhuǎn)角為,當(dāng)時(shí),作,垂足為,交于點(diǎn)

1)如圖1,當(dāng)時(shí),作的平分線于點(diǎn).

①寫出旋轉(zhuǎn)角的度數(shù);②求證:

2)如圖2,在(1)的條件下,設(shè)是直線上的一個(gè)動(dòng)點(diǎn),連接,若,求線段的最小值.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD、AEFG都是正方形,當(dāng)正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖,連接DGBE,并延長(zhǎng)BEDG于點(diǎn)H,且BHDGH,若AB=4,AE=時(shí),則線段BH的長(zhǎng)是( 。

A. B. 16C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點(diǎn)E,過點(diǎn)EEFBC,垂足為F,延長(zhǎng)CDGB的延長(zhǎng)線于點(diǎn)P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線y1=-x+4,y2=x+b都與雙曲線y=交于點(diǎn)A1,m),這兩條直線分別與x軸交于B,C兩點(diǎn)

1)求k的值;

2)直接寫出當(dāng)x0時(shí),不等式x+b的解集;

3)若點(diǎn)Px軸上,連接AP,且AP把△ABC的面積分成12兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案