【題目】某班數學興趣小組經過市場調查,整理出某種商品在第天的售價與銷量的相關信息如下表:
時間(天) | ||
售價(元/件) | 90 | |
每天銷量(件) |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為元
(1)求出與的函數關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?
【答案】(1);(2)第45天時,利潤最大,為6050元;(3)41天
【解析】
(1)根據單價乘以數量,可得利潤,可得答案;
(2)根據分段函數的性質,可分別得出最大值,根據有理數的比較,可得答案;
(3)根據二次函數值大于或等于4800,一次函數值大于或等于48000,可得不等式,根據解不等式組,可得答案.
解:(1)當1≤x<50時,y=(2002x)(x+4030)=2x2+180x+2000,
當50≤x≤90時,y=(2002x)(9030)=120x+12000,
綜上所述:;
(2)當1≤x<50時,
∴a=2<0,
∴二次函數開口下,二次函數對稱軸為x=45,
當x=45時,y最大=6050,
當50≤x≤90時,y隨x的增大而減小,
當x=50時,y最大=6000,
綜上所述,該商品第45天時,當天銷售利潤最大,最大利潤是6050元;
(3)①當1≤x<50時,,
解得:20≤x≤70,
因此利潤不低于4800元的天數是20≤x<50,共30天;
②當50≤x≤90時,
解得:x≤60,
因此利潤不低于4800元的天數是50≤x≤60,共11天,
所以該商品在整個銷售過程中,共41天每天銷售利潤不低于4800元.
科目:初中數學 來源: 題型:
【題目】如圖,一段拋物線y=﹣x2+4(﹣2≤x≤2)為C1,與x軸交于A0,A1兩點,頂點為D1;將C1繞點A1旋轉180°得到C2,頂點為D2;C1與C2組成一個新的圖象,垂直于y軸的直線l與新圖象交于點P1(x1,y1),P2(x2,y2),與線段D1D2交于點P3(x3,y3),設x1,x2,x3均為正數,t=x1+x2+x3,則t的取值范圍是( 。
A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE.
(2)若E為AD中點,FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為落實“精準扶貧”精神,市農科院專家指導李大爺利用坡前空地種植優(yōu)質草莓.根據場調查,在草莓上市銷售的30天中,其銷售價格(元/公斤)與第天之間滿足(為正整數),銷售量(公斤)與第天之間的函數關系如圖所示:
如果李大爺的草莓在上市銷售期間每天的維護費用為80元.
(1)求銷售量與第天之間的函數關系式;
(2)求在草莓上市銷售的30天中,每天的銷售利潤與第天之間的函數關系式;(日銷售利潤=日銷售額﹣日維護費)
(3)求日銷售利潤的最大值及相應的.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在等邊中,點是邊上一點,連接,將繞著點逆時針旋轉,得到,連接,則下列結論中:①;②;③;④,其中正確的結論的個數是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實數根.
(1)求k的取值范圍;
(2)若此方程的兩實數根x1,x2滿足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在點上正方的處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿足函數表達式.已知點與球網的水平距離為,球網的高度為.
(1)當時,①求的值.②通過計算判斷此球能否過網.
(2)若甲發(fā)球過網后,羽毛球飛行到點的水平距離為,離地面的高度為的處時,乙扣球成功,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的一邊AB為直徑作⊙O,交于BC的中點D,過點D作直線EF與⊙O相切,交AC于點E,交AB的延長線于點F.若△ABC的面積為△CDE的面積的8倍,則下列結論中,錯誤的是( 。
A.AC=2AOB.EF=2AEC.AB=2BFD.DF=2DE
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com