如圖,一張矩形紙片ABCD的長(zhǎng)AD=9cm,寬AB=3cm,現(xiàn)將其折疊,使點(diǎn)D與點(diǎn)B重合,則BE=
5
5
分析:連接BE,根據(jù)折疊的性質(zhì)可知BE=ED,設(shè)BE=DE=x,則AE=AD-DE=8-x,然后根據(jù)勾股定理即可求得x的長(zhǎng).
解答:解:連接BE,

由折疊的性質(zhì)可知:BE=ED,
設(shè)BE=DE=x,則AE=AD-DE=9-x,
∵ABCD為矩形,
∴∠A=90°,
在Rt△ABE中,BE2=AB2+AE2,即x2=(9-x)2+32
解得:x=5,
即BE的長(zhǎng)為5.
故答案為:5.
點(diǎn)評(píng):本題考查了翻折變換的知識(shí),難度適中,解答本題的關(guān)鍵是根據(jù)勾股定理列出式子求得x的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,一張矩形紙片沿AB對(duì)折,以AB中點(diǎn)O為頂點(diǎn)將平角五等分,并沿五等分的折線折疊,再沿CD剪開,使展開后為正五角星(正五邊形對(duì)角線所構(gòu)成的圖形),則∠OCD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖是一張矩形紙片ABCD,AD=10cm,若將紙片沿DE折疊,使DC落在DA上,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)F,若BE=6cm,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是一張矩形紙片ABCD,AD=6cm,若將紙片沿DE折疊,使DC落在DA上,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)F,若BE=2cm,則DE=( 。
A、2
2
cm
B、4cm
C、4
2
cm
D、6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一張矩形紙片沿BC折疊,頂點(diǎn)A落在點(diǎn)A′處,第二次過A′,再折疊,使折痕DE∥BC,若AB=2,AC=3,則梯形BDEC的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高淳縣一模)如圖,一張矩形紙片ABCD中,AD>AB.將矩形紙片ABCD沿過點(diǎn)A的直線折疊,使點(diǎn)D落到BC邊上的點(diǎn)D′,折痕AE交DC于點(diǎn)E.
(1)試用尺規(guī)在圖中作出點(diǎn)D′和折痕AE(不寫作法,保留作圖痕跡);
(2)連接DD′、AD′、ED′,則當(dāng)∠ED′C=
30
30
°時(shí),△AD′D為等邊三角形;
(3)若AD=5,AB=4,求ED的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案