【題目】將-矩形OABC置于直角坐標系中,若∠ABO=30°,A3,4),則點C的坐標為_____

【答案】,

【解析】

如圖,過點AADx軸,過點CCEx軸,垂足分別為D、E,先求出OA長,再根據(jù)矩形的性質得到∠COA=∠OAB=90°,OC=AB,由∠ABO=30°,利用三角函數(shù)求出AB的長,證明△COE△OAD,繼而根據(jù)相似三角形對應邊成比例求出OE=4,CE=3,再根據(jù)點C在第二象限即可求得答案.

如圖,過點AADx軸,過點CCEx軸,垂足分別為D、E

∠ADO=CEO=90°,

A(3,4)∴OD=3,AD=4,

∴OA==5

∵四邊形OABC是矩形,

∠COA=∠OAB=90°OC=AB,

∠ABO=30°,

AB=,∴OC=5,

∠COE+∠COA+∠AOD=180°∠OAD+∠AOD=90°,

∴∠COE=∠OAD,

∠ADO=CEO=90°

△COE△OAD,

,

OE=4,CE=3,

∵點C在第二象限,

∴點C坐標為(,),

故答案為:(,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=(x﹣1)2+k的圖象與x軸交于點A(﹣1,0),C兩點,與y軸交于點B.

(1)求拋物線解析式及B點坐標;

(2)在拋物線上是否存在點P使S△PAC=S△ABC?若存在,求出P點坐標,若不存在,請說明理由;

(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形,若存在,求出Q點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016青海省西寧市)如圖,點A的坐標為(0,1),點Bx軸正半軸上的一動點,以AB為邊作等腰直角ABC,使BAC=90°,設點B的橫坐標為x,點C的縱坐標為y,能表示yx的函數(shù)關系的圖象大致是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華從二次函數(shù)y=ax2+bx+c的圖象(如圖)中觀察得到了下面五條信息:

abc0 2a3b=0 b24ac0 a+b+c0 4bc

則其中結論正確的個數(shù)是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與坐標軸交于點A-1,0)和點B0,-5).

1)求該二次函數(shù)的解析式;

2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最小,請求出點P的坐標;

3)設二次函數(shù)的圖象與x軸的另一交點為點C,連接BC,點N是線段BC上一點,過點Ny軸的平行線交拋物線于點M,求當四邊形OBMN為平行四邊形時,點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線AB與x軸的交點C的坐標及AOB的面積;

3)求不等式的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:

1)將△ABC沿x軸翻折后再沿x軸向右平移1個單位,在圖中畫出平移后的△A1B1C1

2)作△ABC關于坐標原點成中心對稱的△A2B2C2

3)求B1的坐標   C2的坐標   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD=4cmAB=8cm,P從點A出發(fā)沿邊上向點勻速運動,同時點從點出發(fā)沿邊上向點勻速運動,速度都是,運動時間是,于點,點關于的對稱點是,射線分別與,交于點

1  °;QF  ,  .(用含的代數(shù)式表示)

2)當點與點重合時, 如圖②,求的值.

3)探究:在點,運動過程中,

的值是否是定值?若是,請求出這個值;若不是,請說明理由.

為何值時,以點,,為頂點的三角形與相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,ACBD交于點O, NAO的中點,點MBC邊上,且BM=3, P為對角線BD上一點,當對角線BD平分∠NPM時,PM-PN值為( )

A.1B.C.2D.

查看答案和解析>>

同步練習冊答案