【題目】如圖,將長方形ABCD沿對角線BD折疊,點(diǎn)C落在點(diǎn)E處,BEAD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為(

A. 62°B. 56°C. 31°D. 28°

【答案】B

【解析】

先利用互余計(jì)算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=CBD=28°,然后利用三角形外角性質(zhì)計(jì)算∠DFE的度數(shù)

∵四邊形ABCD為矩形,

ADBC,ADC=90°,

∵∠FDB=90°BDC=90°62°=28°,

ADBC

∴∠CBD=FDB=28°,

∵矩形ABCD沿對角線BD折疊,

∴∠FBD=CBD=28°,

∴∠DFE=FBD+FDB=28°+28°=56°.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=2,BC=4,點(diǎn)D為邊AB上一動點(diǎn),DEAC,DFBC,垂足為E,F. 連接EF,CD.

1)求證:EFCD;

2)當(dāng)EF為何值時,EFAB;

3)當(dāng)四邊形ECFD為正方形時,求EF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,∠B50°,△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得到△ABC,點(diǎn)B′恰好落在線段AB上,AC、AB′相交于O,則∠COA′的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時直線AC下方拋物線上的動點(diǎn).

(1求拋物線的解析式;(2過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時,求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時,在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是按照一定規(guī)律畫出的樹形圖,經(jīng)觀察可以發(fā)現(xiàn):圖A2比圖A1多出2樹枝,圖A3比圖A2多出4樹枝,圖A4比圖A3多出8樹枝”……照此規(guī)律,圖A6比圖A2多出樹枝”( )

A.32B.56C.60D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)AB的橫坐標(biāo)分別為﹣1,3.與y軸負(fù)半軸交于點(diǎn)C,在下面四個結(jié)論中:①ac<0;②2ab=0;③a+b+c>0;④c=﹣3a.其中正確的結(jié)論有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG的面積分別為4 cm2,36cm2, 點(diǎn)G,C,B在一條直線上,MBF的中點(diǎn),則點(diǎn)MGD的距離為_________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“1285個服務(wù)站點(diǎn),“4.1萬輛公共自行車,日均租騎量32.54萬次,“1小時內(nèi)免費(fèi),,自2012年開通運(yùn)營以來,太原公共自行車已經(jīng)伴隨太原市民走過近七個春秋.課外活動小組的同學(xué)們,在某雙休日11:30-12:00對我市某個公共自行車服務(wù)站點(diǎn)的租騎量進(jìn)行了觀察記錄.“-6”表示騎走了6輛自行車,記錄結(jié)果如下表(時間段不含前一時刻但含后一時刻,如11:30-11:35不含11:30但含11:35)

時間段

11:30-11:35

11:35-11:40

11:40-11:45

11:45-11:50

11:50-11:55

11:55-12:00

自行車數(shù)量

-15

+8

-11

+10

-6

+13

假設(shè)此服務(wù)站點(diǎn)在11:30時有自行車30輛,則在12:00時該站點(diǎn)有自行車( )

A.31B.30C.29D.27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:a、b、c滿足a=-b,|a+1|+c-42=0,請回答問題:

1)請求出a、b、c的值;

2a、b、c所對應(yīng)的點(diǎn)分別為AB、C,P為數(shù)軸上一動點(diǎn),其對應(yīng)的數(shù)為x,若點(diǎn)P在線段BC上時,請化簡式子:|x+1|-|1-x|+2|x-4|(請寫出化簡過程);

3)若點(diǎn)PA點(diǎn)出發(fā),以每秒2個單位長度的速度向右運(yùn)動,試探究當(dāng)點(diǎn)P運(yùn)動多少秒時,PC=3PB?

查看答案和解析>>

同步練習(xí)冊答案