若圓內(nèi)接正三角形的邊長為2,則圓的半徑為   
【答案】分析:畫圖,利用正三角形的性質(zhì)找到由內(nèi)切圓半徑,外接圓半徑和邊長的一半所組成的三角形(如△OBD),然后進行計算可求出外接圓半徑.
解答:解:如圖,△ABC是⊙O的邊長為2的內(nèi)接正三角形.
連OB,OA,
∵△ABC是正三角形,
∴AO垂直平分BC,設垂足為D.
∴BD=1;
又∵∠OBD=30°,
∴OD=,則OB==,
故填
點評:熟悉正三角形的性質(zhì).它的內(nèi)心,外心等是重合的.記住含30度的直角三角形三邊之間的數(shù)量關系(1::2)以及正三角形的內(nèi)切圓半徑,外接圓半徑和它的高的比(1:2:3).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若圓內(nèi)接正三角形的邊長為2,則圓的半徑為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若圓內(nèi)接正三角形的邊長為a,則邊心距d=
3
6
a
3
6
a

查看答案和解析>>

科目:初中數(shù)學 來源:設計九年級上數(shù)學人教版 人教版 題型:022

若圓內(nèi)接正三角形的邊長是43 cm,則內(nèi)接圓半徑R為________,邊心距r為________.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年貴州省黔東南州岑鞏縣水尾中學九年級(上)期中數(shù)學試卷(解析版) 題型:填空題

若圓內(nèi)接正三角形的邊長為a,則邊心距d=   

查看答案和解析>>

同步練習冊答案