【題目】如圖,邊長為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(5)OGBD=AE2+CF2

【答案】(1),(2),(3),(5).

【解析】

試題分析:(1)∵四邊形ABCD是正方形,

∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,

∴∠BOF+∠COF=90°,

∵∠EOF=90°,

∴∠BOF+∠COE=90°,

∴∠BOE=∠COF,

在△BOE和△COF中,

,

∴△BOE≌△COF(ASA),

∴OE=OF,BE=CF,

∴EF=OE;故正確;

(2)∵S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD

∴S四邊形OEBF:S正方形ABCD=1:4;故正確;

(3)∴BE+BF=BF+CF=BC=OA;故正確;

(4)過點(diǎn)O作OH⊥BC,

∵BC=1,

∴OH=BC=

設(shè)AE=x,則BE=CF=1﹣x,BF=x,

∴S△BEF+S△COF=BEBF+CFOH=x(1﹣x)+(1﹣x)×=﹣(x﹣2+,

∵a=﹣<0,

∴當(dāng)x=時(shí),S△BEF+S△COF最大;

即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;故錯(cuò)誤;

(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,

∴△OEG∽△OBE,

∴OE:OB=OG:OE,

∴OGOB=OE2,

∵OB=BD,OE=EF,

∴OGBD=EF2,

∵在△BEF中,EF2=BE2+BF2

∴EF2=AE2+CF2,

∴OGBD=AE2+CF2.故正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:3a2﹣6a+3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為(
A.0.25×105
B.0.25×106
C.2.5×105
D.2.5×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)直角三角形的一條直角邊長是5cm,另一條直角邊比斜邊短1cm,則斜邊長為(cm

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中是假命題的是(

A. 有一個(gè)角是直角的平行四邊形是矩形 B. 一組鄰邊相等的矩形是正方形

C. 一組對(duì)邊平行且相等的四邊形是平行四邊形 D. 有兩組鄰邊相等的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東濰坊第24題)如圖,在菱形ABCD中,AB=2,∠BAD=60°,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.

(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN=AC;

(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于3時(shí),求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,不是中心對(duì)稱圖形的是(

A.平行四邊形B.矩形C.菱形D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3S△EDF,求AE的長;

(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.

①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;

②求EF的長;

(3)如圖③,若FE的延長線與BC的延長線交于點(diǎn)N,CN=1,CE=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】福州地鐵將于2014年12月試通車,規(guī)劃總長約180000米,用科學(xué)記數(shù)法表示這個(gè)總長為( )
A.0.18×106
B.1.8×106
C.1.8×105
D.18×104

查看答案和解析>>

同步練習(xí)冊(cè)答案